- openenv¶
Atari Environment¶
Integration of Atari 2600 games with the OpenEnv framework via the Arcade Learning Environment (ALE). ALE provides access to 100+ classic Atari games for RL research.
Supported Games¶
ALE supports 100+ Atari 2600 games including:
Popular Games¶
- Pong - Classic two-player tennis
- Breakout - Break bricks with a ball
- Space Invaders - Shoot descending aliens
- Pac-Man / Ms. Pac-Man - Navigate mazes and eat pellets
- Asteroids - Destroy asteroids in space
- Defender - Side-scrolling space shooter
- Centipede - Shoot segmented centipede
- Donkey Kong - Jump over barrels to save princess
- Frogger - Cross road and river safely
- Q*bert - Jump on pyramid cubes
And many more! For a complete list, see ALE documentation.
Architecture¶
┌────────────────────────────────────┐
│ RL Training Code (Client) │
│ AtariEnv.step(action) │
└──────────────┬─────────────────────┘
│ HTTP
┌──────────────▼─────────────────────┐
│ FastAPI Server (Docker) │
│ AtariEnvironment │
│ ├─ Wraps ALEInterface │
│ ├─ Handles observations │
│ └─ Action execution │
└────────────────────────────────────┘
Installation & Usage¶
Option 1: Local Development (without Docker)¶
Requirements:
- Python 3.11+
- ale-py installed: pip install ale-py
from envs.atari_env import AtariEnv, AtariAction
# Start local server manually
# python -m envs.atari_env.server.app
# Connect to local server
env = AtariEnv(base_url="http://localhost:8000")
# Reset environment
result = env.reset()
print(f"Screen shape: {result.observation.screen_shape}")
print(f"Legal actions: {result.observation.legal_actions}")
print(f"Lives: {result.observation.lives}")
# Take actions
for _ in range(10):
action_id = 2 # UP action
result = env.step(AtariAction(action_id=action_id, game_name="pong"))
print(f"Reward: {result.reward}, Done: {result.done}")
if result.done:
break
# Cleanup
env.close()
Option 2: Docker (Recommended)¶
Build Atari image:
cd OpenEnv
# Build the image
docker build \
-f src/envs/atari_env/server/Dockerfile \
-t atari-env:latest \
.
Run specific games:
# Pong (default)
docker run -p 8000:8000 atari-env:latest
# Breakout
docker run -p 8000:8000 -e ATARI_GAME=breakout atari-env:latest
# Space Invaders with grayscale observation
docker run -p 8000:8000 \
-e ATARI_GAME=space_invaders \
-e ATARI_OBS_TYPE=grayscale \
atari-env:latest
# Ms. Pac-Man with full action space
docker run -p 8000:8000 \
-e ATARI_GAME=ms_pacman \
-e ATARI_FULL_ACTION_SPACE=true \
atari-env:latest
Use with from_docker_image():
from envs.atari_env import AtariEnv, AtariAction
import numpy as np
# Automatically starts container
env = AtariEnv.from_docker_image("atari-env:latest")
result = env.reset()
result = env.step(AtariAction(action_id=2)) # UP
# Reshape screen for visualization
screen = np.array(result.observation.screen).reshape(result.observation.screen_shape)
print(f"Screen shape: {screen.shape}") # (210, 160, 3) for RGB
env.close() # Stops container
Observation Types¶
1. RGB (Default)¶
- Shape: [210, 160, 3]
- Description: Full-color screen observation
- Usage: Most realistic, good for vision-based learning
docker run -p 8000:8000 -e ATARI_OBS_TYPE=rgb atari-env:latest
2. Grayscale¶
- Shape: [210, 160]
- Description: Grayscale screen observation
- Usage: Reduced dimensionality, faster processing
docker run -p 8000:8000 -e ATARI_OBS_TYPE=grayscale atari-env:latest
3. RAM¶
- Shape: [128]
- Description: Raw 128-byte Atari 2600 RAM contents
- Usage: Compact representation, useful for specific research
docker run -p 8000:8000 -e ATARI_OBS_TYPE=ram atari-env:latest
Action Spaces¶
Minimal Action Set (Default)¶
Game-specific minimal actions (typically 4-9 actions). - Pong: 6 actions (NOOP, FIRE, UP, DOWN, etc.) - Breakout: 4 actions (NOOP, FIRE, LEFT, RIGHT)
docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=false atari-env:latest
Full Action Set¶
All 18 possible Atari 2600 actions: 0. NOOP 1. FIRE 2. UP 3. RIGHT 4. LEFT 5. DOWN 6. UPRIGHT 7. UPLEFT 8. DOWNRIGHT 9. DOWNLEFT 10. UPFIRE 11. RIGHTFIRE 12. LEFTFIRE 13. DOWNFIRE 14. UPRIGHTFIRE 15. UPLEFTFIRE 16. DOWNRIGHTFIRE 17. DOWNLEFTFIRE
docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=true atari-env:latest
Configuration¶
Environment Variables¶
ATARI_GAME: Game name (default: "pong")ATARI_OBS_TYPE: Observation type - "rgb", "grayscale", "ram" (default: "rgb")ATARI_FULL_ACTION_SPACE: Use full action space - "true"/"false" (default: "false")ATARI_MODE: Game mode (optional, game-specific)ATARI_DIFFICULTY: Game difficulty (optional, game-specific)ATARI_REPEAT_ACTION_PROB: Sticky action probability 0.0-1.0 (default: "0.0")ATARI_FRAMESKIP: Frames to skip per action (default: "4")
Example: Breakout with Custom Settings¶
docker run -p 8000:8000 \
-e ATARI_GAME=breakout \
-e ATARI_OBS_TYPE=grayscale \
-e ATARI_FULL_ACTION_SPACE=true \
-e ATARI_REPEAT_ACTION_PROB=0.25 \
-e ATARI_FRAMESKIP=4 \
atari-env:latest
API Reference¶
AtariAction¶
@dataclass
class AtariAction(Action):
action_id: int # Action index to execute
game_name: str = "pong" # Game name
obs_type: str = "rgb" # Observation type
full_action_space: bool = False # Full or minimal action space
AtariObservation¶
@dataclass
class AtariObservation(Observation):
screen: List[int] # Flattened screen pixels
screen_shape: List[int] # Original screen shape
legal_actions: List[int] # Legal action indices
lives: int # Lives remaining
episode_frame_number: int # Frame # in episode
frame_number: int # Total frame #
done: bool # Episode finished
reward: Optional[float] # Reward from last action
AtariState¶
@dataclass
class AtariState(State):
episode_id: str # Unique episode ID
step_count: int # Number of steps
game_name: str # Game name
obs_type: str # Observation type
full_action_space: bool # Action space type
mode: Optional[int] # Game mode
difficulty: Optional[int] # Game difficulty
repeat_action_probability: float # Sticky action prob
frameskip: int # Frameskip setting
Example Script¶
#!/usr/bin/env python3
"""Example training loop with Atari environment."""
import numpy as np
from envs.atari_env import AtariEnv, AtariAction
# Start environment
env = AtariEnv.from_docker_image("atari-env:latest")
# Training loop
for episode in range(10):
result = env.reset()
episode_reward = 0
steps = 0
while not result.done:
# Random policy (replace with your RL agent)
action_id = np.random.choice(result.observation.legal_actions)
# Take action
result = env.step(AtariAction(action_id=action_id))
episode_reward += result.reward or 0
steps += 1
# Reshape screen for processing
screen = np.array(result.observation.screen).reshape(
result.observation.screen_shape
)
# Your RL training code here
# ...
print(f"Episode {episode}: reward={episode_reward:.2f}, steps={steps}")
env.close()
Testing¶
Local Testing¶
# Install dependencies
pip install ale-py fastapi uvicorn requests
# Start server
cd /Users/sanyambhutani/OpenEnv/OpenEnv
export PYTHONPATH=/Users/sanyambhutani/OpenEnv/OpenEnv/src
python -m envs.atari_env.server.app
# Test from another terminal
python -c "
from envs.atari_env import AtariEnv, AtariAction
env = AtariEnv(base_url='http://localhost:8000')
result = env.reset()
print(f'Initial obs: {result.observation.screen_shape}')
result = env.step(AtariAction(action_id=2))
print(f'After step: reward={result.reward}, done={result.done}')
env.close()
"
Docker Testing¶
# Build and run
docker build -f src/envs/atari_env/server/Dockerfile -t atari-env:latest .
docker run -p 8000:8000 atari-env:latest
# Test in another terminal
curl http://localhost:8000/health
curl -X POST http://localhost:8000/reset
Popular Games and Their Characteristics¶
| Game | Minimal Actions | Lives | Difficulty | Notes |
|---|---|---|---|---|
| Pong | 6 | 1 | Low | Good for learning basics |
| Breakout | 4 | 5 | Medium | Classic RL benchmark |
| Space Invaders | 6 | 3 | Medium | Shooting game |
| Ms. Pac-Man | 9 | 3 | High | Complex navigation |
| Asteroids | 14 | 3 | Medium | Continuous shooting |
| Montezuma's Revenge | 18 | 5 | Very High | Exploration challenge |
| Pitfall | 18 | 1 | High | Platformer |
| Seaquest | 18 | 3 | High | Submarine rescue |
Limitations & Notes¶
- Frame perfect timing: Some games require precise timing
- Exploration: Games like Montezuma's Revenge are notoriously difficult
- Observation delay: HTTP adds minimal latency vs local gym
- Determinism: Set
ATARI_REPEAT_ACTION_PROB=0.0for deterministic behavior - ROMs: All ROMs are bundled with ale-py package
References¶
Citation¶
If you use ALE in your research, please cite:
@Article{bellemare13arcade,
author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
journal = {Journal of Artificial Intelligence Research},
year = "2013",
month = "jun",
volume = "47",
pages = "253--279",
}