kernrl¶
RL environment for GPU kernel optimization. Train LLM agents to write fast CUDA/Triton kernels.
Overview¶
Agents receive a PyTorch reference implementation and must write an optimized GPU kernel that: 1. Produces the same output (within tolerance) 2. Runs faster than the baseline
Each submission is evaluated with: - Compilation checking - Correctness verification against reference - Benchmark timing for speedup measurement - NSight Systems profiling (optional) - NSight Compute profiling (optional)
Installation¶
cd envs/kernrl
pip install -e .
Requires: NVIDIA GPU with CUDA toolkit, PyTorch, Triton
Quick Start¶
from openenv.envs.kernrl import kernrl_env, KernelAction
# Connect to server
env = kernrl_env(base_url="http://localhost:8000")
# Start episode
obs = env.reset(problem_id="L1_23_Softmax")
print(obs.problem_description)
# Submit a kernel
action = KernelAction(code='''
import torch
import triton
import triton.language as tl
@triton.jit
def softmax_kernel(input_ptr, output_ptr, n_cols, BLOCK_SIZE: tl.constexpr):
row_idx = tl.program_id(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
row_start = row_idx * n_cols
row = tl.load(input_ptr + row_start + col_offsets, mask=mask, other=-float('inf'))
row_max = tl.max(row, axis=0)
row = row - row_max
numerator = tl.exp(row)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
tl.store(output_ptr + row_start + col_offsets, softmax_output, mask=mask)
class Model(torch.nn.Module):
def forward(self, x):
n_rows, n_cols = x.shape
output = torch.empty_like(x)
BLOCK_SIZE = triton.next_power_of_2(n_cols)
softmax_kernel[(n_rows,)](x, output, n_cols, BLOCK_SIZE=BLOCK_SIZE)
return output
''')
result = env.step(action)
print(f"Speedup: {result.observation.speedup}x")
print(f"Correct: {result.observation.correctness_pass}")
Running the Server¶
# Development
uvicorn kernrl.server.app:app --reload --host 0.0.0.0 --port 8000
# Docker (GPU required)
cd envs/kernrl
docker build -t kernrl -f server/Dockerfile .
docker run --gpus all -p 8000:8000 kernrl
Problem Levels¶
| Level | Name | Count | Description |
|---|---|---|---|
| 1 | Simple Operators | 15 | matmul, softmax, conv, norms |
| 2 | Fused Operations | 15 | matmul+activation chains |
| 3 | Single Blocks | 3 | attention, transformer block |
| 4 | Novel Layers | 8 | MLA, MoE, GQA, FP8, INT4 |
| 5 | Scientific Computing | 8 | N-body, stencil, SpMV |
| 6 | Graphics | 8 | ray tracing, histogram, blur |
| 7 | Signal Processing | 8 | FFT, convolution, median filter |
| 8 | Video Processing | 8 | motion estimation, optical flow |
| 9 | Parallel Primitives | 8 | scan, reduction, radix sort |
| 10 | Cryptography | 8 | SHA-256, AES, ChaCha20 |
Total: 89 problems
Reward Structure¶
Rewards are designed so that only speedup > 1.0x baseline produces positive reward. Compilation and correctness alone do not give positive reward - they are necessary but not sufficient.
| Condition | Reward | Description |
|---|---|---|
| Compilation failure | -0.5 | Penalty for code that doesn't compile |
| Correctness failure | -0.25 | Penalty for incorrect output |
| Correct but slower | (speedup - 1.0) * 0.5 | Small negative for being slower than baseline |
| Correct and faster | min(speedup - 1.0, 2.0) | Positive, capped at 2.0 |
Examples: - Compile fail: reward = -0.5 - Compiles, wrong output: reward = -0.25 - Compiles, correct, 0.8x speed: reward = -0.1 - Compiles, correct, 1.0x speed: reward = 0.0 - Compiles, correct, 1.5x speed: reward = 0.5 - Compiles, correct, 3.0x speed: reward = 2.0 (capped)
Security Considerations¶
Warning: This environment executes user-submitted kernel code with full Python/CUDA privileges. While Docker provides container isolation, there is no sandboxing within the container for: - Filesystem access - Network requests - Resource consumption (GPU memory, CPU) - Module imports
This is acceptable for trusted research environments but should be documented as a security consideration. For production deployments, consider additional isolation measures.
License¶
BSD-3-Clause (following OpenEnv licensing)