hyperactor/host.rs
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under the BSD-style license found in the
6 * LICENSE file in the root directory of this source tree.
7 */
8
9//! This module defines [`Host`], which represents all the procs running on a host.
10//! The procs themselves are managed by an implementation of [`ProcManager`], which may,
11//! for example, fork new processes for each proc, or spawn them in the same process
12//! for testing purposes.
13//!
14//! The primary purpose of a host is to manage the lifecycle of these procs, and to
15//! serve as a single front-end for all the procs on a host, multiplexing network
16//! channels.
17//!
18//! ## Channel muxing
19//!
20//! A [`Host`] maintains a single frontend address, through which all procs are accessible
21//! through direct addressing: the id of each proc is the `ProcId::Direct(frontend_addr, proc_name)`.
22//! In the following, the frontend address is denoted by `*`. The host listens on `*` and
23//! multiplexes messages based on the proc name. When spawning procs, the host maintains
24//! backend channels with separate addresses. In the diagram `#` is the backend address of
25//! the host, while `#n` is the backend address for proc *n*. The host forwards messages
26//! to the appropriate backend channel, while procs forward messages to the host backend
27//! channel at `#`.
28//!
29//! ```text
30//! ┌────────────┐
31//! ┌───▶ proc *,1 │
32//! │ #1└────────────┘
33//! │
34//! ┌──────────┐ │ ┌────────────┐
35//! │ Host │◀───┼───▶ proc *,2 │
36//! *└──────────┘# │ #2└────────────┘
37//! │
38//! │ ┌────────────┐
39//! └───▶ proc *,3 │
40//! #3└────────────┘
41//! ```
42
43use std::collections::HashMap;
44use std::fmt;
45use std::marker::PhantomData;
46use std::str::FromStr;
47use std::sync::Arc;
48use std::time::Duration;
49
50use async_trait::async_trait;
51use futures::Future;
52use futures::StreamExt;
53use futures::stream;
54use tokio::process::Child;
55use tokio::process::Command;
56use tokio::sync::Mutex;
57
58use crate::Actor;
59use crate::ActorHandle;
60use crate::ActorRef;
61use crate::PortHandle;
62use crate::Proc;
63use crate::ProcId;
64use crate::actor::Binds;
65use crate::actor::Referable;
66use crate::channel;
67use crate::channel::ChannelAddr;
68use crate::channel::ChannelError;
69use crate::channel::ChannelTransport;
70use crate::channel::Rx;
71use crate::channel::Tx;
72use crate::clock::Clock;
73use crate::clock::RealClock;
74use crate::mailbox::BoxableMailboxSender;
75use crate::mailbox::DialMailboxRouter;
76use crate::mailbox::IntoBoxedMailboxSender as _;
77use crate::mailbox::MailboxClient;
78use crate::mailbox::MailboxSender;
79use crate::mailbox::MailboxServer;
80use crate::mailbox::MailboxServerHandle;
81use crate::mailbox::MessageEnvelope;
82use crate::mailbox::Undeliverable;
83
84/// The type of error produced by host operations.
85#[derive(Debug, thiserror::Error)]
86pub enum HostError {
87 /// A channel error occurred during a host operation.
88 #[error(transparent)]
89 ChannelError(#[from] ChannelError),
90
91 /// The named proc already exists and cannot be spawned.
92 #[error("proc '{0}' already exists")]
93 ProcExists(String),
94
95 /// Failures occuring while spawning a subprocess.
96 #[error("proc '{0}' failed to spawn process: {1}")]
97 ProcessSpawnFailure(ProcId, #[source] std::io::Error),
98
99 /// Failures occuring while configuring a subprocess.
100 #[error("proc '{0}' failed to configure process: {1}")]
101 ProcessConfigurationFailure(ProcId, #[source] anyhow::Error),
102
103 /// Failures occuring while spawning a management actor in a proc.
104 #[error("failed to spawn agent on proc '{0}': {1}")]
105 AgentSpawnFailure(ProcId, #[source] anyhow::Error),
106
107 /// An input parameter was missing.
108 #[error("parameter '{0}' missing: {1}")]
109 MissingParameter(String, std::env::VarError),
110
111 /// An input parameter was invalid.
112 #[error("parameter '{0}' invalid: {1}")]
113 InvalidParameter(String, anyhow::Error),
114}
115
116/// A host, managing the lifecycle of several procs, and their backend
117/// routing, as described in this module's documentation.
118#[derive(Debug)]
119pub struct Host<M> {
120 procs: HashMap<String, ChannelAddr>,
121 frontend_addr: ChannelAddr,
122 backend_addr: ChannelAddr,
123 router: DialMailboxRouter,
124 manager: M,
125 service_proc: Proc,
126}
127
128impl<M: ProcManager> Host<M> {
129 /// Serve a host using the provided ProcManager, on the provided `addr`.
130 /// On success, the host will multiplex messages for procs on the host
131 /// on the address of the host.
132 pub async fn serve(
133 manager: M,
134 addr: ChannelAddr,
135 ) -> Result<(Self, MailboxServerHandle), HostError> {
136 let (frontend_addr, frontend_rx) = channel::serve(addr)?;
137
138 // We set up a cascade of routers: first, the outer router supports
139 // sending to the the system proc, while the dial router manages dialed
140 // connections.
141 let router = DialMailboxRouter::new();
142
143 // Establish a backend channel on the preferred transport. We currently simply
144 // serve the same router on both.
145 let (backend_addr, backend_rx) = channel::serve(ChannelAddr::any(manager.transport()))?;
146
147 // Set up a system proc. This is often used to manage the host itself.
148 let service_proc_id = ProcId::Direct(frontend_addr.clone(), "service".to_string());
149 let service_proc = Proc::new(service_proc_id.clone(), router.boxed());
150
151 tracing::info!(
152 frontend_addr = frontend_addr.to_string(),
153 backend_addr = backend_addr.to_string(),
154 service_proc_id = service_proc_id.to_string(),
155 "serving host"
156 );
157
158 let host = Host {
159 procs: HashMap::new(),
160 frontend_addr,
161 backend_addr,
162 router: router.clone(),
163 manager,
164 service_proc: service_proc.clone(),
165 };
166
167 let router = ProcOrDial {
168 proc: service_proc,
169 router,
170 };
171
172 // Serve the same router on both frontend and backend addresses.
173 let _backend_handle = router.clone().serve(backend_rx);
174 let frontend_handle = router.serve(frontend_rx);
175
176 Ok((host, frontend_handle))
177 }
178
179 /// The underlying proc manager.
180 pub fn manager(&self) -> &M {
181 &self.manager
182 }
183
184 /// The address which accepts messages destined for this host.
185 pub fn addr(&self) -> &ChannelAddr {
186 &self.frontend_addr
187 }
188
189 /// The system proc associated with this host.
190 pub fn system_proc(&self) -> &Proc {
191 &self.service_proc
192 }
193
194 /// Spawn a new process with the given `name`. On success, the proc has been
195 /// spawned, and is reachable through the returned, direct-addressed ProcId,
196 /// which will be `ProcId::Direct(self.addr(), name)`.
197 pub async fn spawn(
198 &mut self,
199 name: String,
200 ) -> Result<(ProcId, ActorRef<ManagerAgent<M>>), HostError> {
201 if self.procs.contains_key(&name) {
202 return Err(HostError::ProcExists(name));
203 }
204
205 let proc_id = ProcId::Direct(self.frontend_addr.clone(), name.clone());
206 let handle = self
207 .manager
208 .spawn(proc_id.clone(), self.backend_addr.clone())
209 .await?;
210
211 // Await readiness (config-driven; 0s disables timeout).
212 let to: Duration = crate::config::global::get(crate::config::HOST_SPAWN_READY_TIMEOUT);
213 let ready: Result<(), HostError> = if to == Duration::from_secs(0) {
214 handle.ready().await.map_err(|e| {
215 HostError::ProcessConfigurationFailure(proc_id.clone(), anyhow::anyhow!("{e:?}"))
216 })
217 } else {
218 match RealClock.timeout(to, handle.ready()).await {
219 Ok(Ok(())) => Ok(()),
220 Ok(Err(e)) => Err(HostError::ProcessConfigurationFailure(
221 proc_id.clone(),
222 anyhow::anyhow!("{e:?}"),
223 )),
224 Err(_) => Err(HostError::ProcessConfigurationFailure(
225 proc_id.clone(),
226 anyhow::anyhow!(format!("timeout waiting for Ready after {to:?}")),
227 )),
228 }
229 };
230
231 ready?;
232
233 // After Ready, addr() + agent_ref() must be present.
234 let addr = handle.addr().ok_or_else(|| {
235 HostError::ProcessConfigurationFailure(
236 proc_id.clone(),
237 anyhow::anyhow!("proc reported Ready but no addr() available"),
238 )
239 })?;
240 let agent_ref = handle.agent_ref().ok_or_else(|| {
241 HostError::ProcessConfigurationFailure(
242 proc_id.clone(),
243 anyhow::anyhow!("proc reported Ready but no agent_ref() available"),
244 )
245 })?;
246
247 self.router.bind(proc_id.clone().into(), addr.clone());
248 self.procs.insert(name, addr);
249
250 Ok((proc_id, agent_ref))
251 }
252}
253
254/// A router used to route to the system proc, or else fall back to
255/// the dial mailbox router.
256#[derive(Debug, Clone)]
257struct ProcOrDial {
258 proc: Proc,
259 router: DialMailboxRouter,
260}
261
262impl MailboxSender for ProcOrDial {
263 fn post_unchecked(
264 &self,
265 envelope: MessageEnvelope,
266 return_handle: PortHandle<Undeliverable<MessageEnvelope>>,
267 ) {
268 if envelope.dest().actor_id().proc_id() == self.proc.proc_id() {
269 self.proc.post_unchecked(envelope, return_handle);
270 } else {
271 self.router.post_unchecked(envelope, return_handle)
272 }
273 }
274}
275
276/// Error returned by [`ProcHandle::ready`].
277#[derive(Debug, Clone)]
278pub enum ReadyError<TerminalStatus> {
279 /// The proc reached a terminal state before becoming Ready.
280 Terminal(TerminalStatus),
281 /// Implementation lost its status channel / cannot observe state.
282 ChannelClosed,
283}
284
285/// Error returned by [`ProcHandle::wait`].
286#[derive(Debug, Clone)]
287pub enum WaitError {
288 /// Implementation lost its status channel / cannot observe state.
289 ChannelClosed,
290}
291
292/// Error returned by [`ProcHandle::terminate`] and
293/// [`ProcHandle::kill`].
294///
295/// - `Unsupported`: the manager cannot perform the requested proc
296/// signaling (e.g., local/in-process manager that doesn't emulate
297/// kill).
298/// - `AlreadyTerminated(term)`: the proc was already terminal; `term`
299/// is the same value `wait()` would return.
300/// - `ChannelClosed`: the manager lost its lifecycle channel and
301/// cannot reliably observe state transitions.
302/// - `Io(err)`: manager-specific failure delivering the signal or
303/// performing shutdown (e.g., OS error on kill).
304#[derive(Debug)]
305pub enum TerminateError<TerminalStatus> {
306 /// Manager doesn't support signaling (e.g., Local manager).
307 Unsupported,
308 /// A terminal state was already reached while attempting
309 /// terminate/kill.
310 AlreadyTerminated(TerminalStatus),
311 /// Implementation lost its status channel / cannot observe state.
312 ChannelClosed,
313 /// Manager-specific failure to deliver signal or perform
314 /// shutdown.
315 Io(anyhow::Error),
316}
317
318impl<T: fmt::Debug> fmt::Display for TerminateError<T> {
319 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
320 match self {
321 TerminateError::Unsupported => write!(f, "terminate/kill unsupported by manager"),
322 TerminateError::AlreadyTerminated(st) => {
323 write!(f, "proc already terminated (status: {st:?})")
324 }
325 TerminateError::ChannelClosed => {
326 write!(f, "lifecycle channel closed; cannot observe state")
327 }
328 TerminateError::Io(err) => write!(f, "I/O error during terminate/kill: {err}"),
329 }
330 }
331}
332
333impl<T: fmt::Debug> std::error::Error for TerminateError<T> {
334 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
335 match self {
336 TerminateError::Io(err) => Some(err.root_cause()),
337 _ => None,
338 }
339 }
340}
341
342/// Summary of results from a bulk termination attempt.
343///
344/// - `attempted`: total number of child procs for which termination
345/// was attempted.
346/// - `ok`: number of procs successfully terminated (includes those
347/// that were already in a terminal state).
348/// - `failed`: number of procs that could not be terminated (e.g.
349/// signaling errors or lost lifecycle channel).
350#[derive(Debug)]
351pub struct TerminateSummary {
352 /// Total number of child procs for which termination was
353 /// attempted.
354 pub attempted: usize,
355 /// Number of procs that successfully reached a terminal state.
356 ///
357 /// This count includes both procs that exited cleanly after
358 /// `terminate(timeout)` and those that were already in a terminal
359 /// state before termination was attempted.
360 pub ok: usize,
361 /// Number of procs that failed to terminate.
362 ///
363 /// Failures typically arise from signaling errors (e.g., OS
364 /// failure to deliver SIGTERM/SIGKILL) or a lost lifecycle
365 /// channel, meaning the manager could no longer observe state
366 /// transitions.
367 pub failed: usize,
368}
369
370impl fmt::Display for TerminateSummary {
371 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
372 write!(
373 f,
374 "attempted={} ok={} failed={}",
375 self.attempted, self.ok, self.failed
376 )
377 }
378}
379
380/// Trait for managers that can terminate many child **units** in
381/// bulk.
382///
383/// Implementors provide a concurrency-bounded, graceful shutdown over
384/// all currently tracked children (polite stop → wait → forceful
385/// stop), returning a summary of outcomes. The exact stop/kill
386/// semantics are manager-specific: for example, an OS-process manager
387/// might send signals, while an in-process manager might drain/abort
388/// tasks.
389#[async_trait::async_trait]
390pub trait BulkTerminate: Send + Sync {
391 /// Gracefully terminate all known children.
392 ///
393 /// Initiates a polite shutdown for each child, waits up to
394 /// `timeout` for completion, then escalates to a forceful stop
395 /// for any that remain. Work may be done in parallel, capped by
396 /// `max_in_flight`. The returned [`TerminateSummary`] reports how
397 /// many children were attempted, succeeded, and failed.
398 ///
399 /// Implementation notes:
400 /// - "Polite shutdown" and "forceful stop" are intentionally
401 /// abstract. Implementors should map these to whatever
402 /// semantics they control (e.g., proc-level drain/abort, RPCs,
403 /// OS signals).
404 /// - The operation must be idempotent and tolerate races with
405 /// concurrent termination or external exits.
406 ///
407 /// # Parameters
408 /// - `timeout`: Per-child grace period before escalation to a
409 /// forceful stop.
410 /// - `max_in_flight`: Upper bound on concurrent terminations (≥
411 /// 1) to prevent resource spikes (I/O, CPU, file descriptors,
412 /// etc.).
413 async fn terminate_all(
414 &self,
415 timeout: std::time::Duration,
416 max_in_flight: usize,
417 ) -> TerminateSummary;
418}
419
420// Host convenience that's available only when its manager supports
421// bulk termination.
422impl<M: ProcManager + BulkTerminate> Host<M> {
423 /// Gracefully terminate all procs spawned by this host.
424 ///
425 /// Delegates to the underlying manager’s
426 /// [`BulkTerminate::terminate_all`] implementation. Use this to
427 /// perform orderly teardown during scale-down or shutdown.
428 ///
429 /// # Parameters
430 /// - `timeout`: Per-child grace period before escalation.
431 /// - `max_in_flight`: Upper bound on concurrent terminations.
432 ///
433 /// # Returns
434 /// A [`TerminateSummary`] with counts of attempted/ok/failed
435 /// terminations.
436 pub async fn terminate_children(
437 &self,
438 timeout: Duration,
439 max_in_flight: usize,
440 ) -> TerminateSummary {
441 self.manager.terminate_all(timeout, max_in_flight).await
442 }
443}
444
445/// Minimal uniform surface for a spawned-**proc** handle returned by
446/// a `ProcManager`. Each manager can return its own concrete handle,
447/// as long as it exposes these. A **proc** is the Hyperactor runtime
448/// + its actors (lifecycle controlled via `Proc` APIs such as
449/// `destroy_and_wait`). A proc **may** be hosted *inside* an OS
450/// **process**, but it is conceptually distinct:
451///
452/// - `LocalProcManager`: runs the proc **in this OS process**; there
453/// is no child process to signal. Lifecycle is entirely proc-level.
454/// - `ProcessProcManager` (test-only here): launches an **external OS
455/// process** which hosts the proc, but this toy manager does
456/// **not** wire a control plane for shutdown, nor an exit monitor.
457///
458/// This trait is therefore written in terms of the **proc**
459/// lifecycle:
460///
461/// - `ready()` resolves when the proc is Ready (mailbox bound; agent
462/// available).
463/// - `wait()` resolves with the proc's terminal status
464/// (Stopped/Killed/Failed).
465/// - `terminate()` requests a graceful shutdown of the *proc* and
466/// waits up to the deadline; managers that also own a child OS
467/// process may escalate to `SIGKILL` if the proc does not exit in
468/// time.
469/// - `kill()` requests an immediate, forced termination. For
470/// in-process procs, this may be implemented as an immediate
471/// drain/abort of actor tasks. For external procs, this is
472/// typically a `SIGKILL`.
473///
474/// The shape of the terminal value is `Self::TerminalStatus`.
475/// Managers that track rich info (exit code, signal, address, agent)
476/// can expose it; trivial managers may use `()`.
477///
478/// Managers that do not support signaling must return `Unsupported`.
479#[async_trait]
480pub trait ProcHandle: Clone + Send + Sync + 'static {
481 /// The agent actor type installed in the proc by the manager.
482 /// Must implement both:
483 /// - [`Actor`], because the agent actually runs inside the proc,
484 /// and
485 /// - [`Referable`], so callers can hold `ActorRef<Self::Agent>`.
486 type Agent: Actor + Referable;
487
488 /// The type of terminal status produced when the proc exits.
489 ///
490 /// For example, an external proc manager may use a rich status
491 /// enum (e.g. `ProcStatus`), while an in-process manager may use
492 /// a trivial unit type. This is the value returned by
493 /// [`ProcHandle::wait`] and carried by [`ReadyError::Terminal`].
494 type TerminalStatus: std::fmt::Debug + Clone + Send + Sync + 'static;
495
496 /// The proc's logical identity on this host.
497 fn proc_id(&self) -> &ProcId;
498
499 /// The proc's address (the one callers bind into the host
500 /// router).
501 fn addr(&self) -> Option<ChannelAddr>;
502
503 /// The agent actor reference hosted in the proc.
504 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>>;
505
506 /// Resolves when the proc becomes Ready. Multi-waiter,
507 /// non-consuming.
508 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>>;
509
510 /// Resolves with the terminal status (Stopped/Killed/Failed/etc).
511 /// Multi-waiter, non-consuming.
512 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError>;
513
514 /// Politely stop the proc before the deadline; managers that own
515 /// a child OS process may escalate to a forced kill at the
516 /// deadline. Idempotent and race-safe: concurrent callers
517 /// coalesce; the first terminal outcome wins and all callers
518 /// observe it via `wait()`.
519 ///
520 /// Returns the single terminal status the proc reached (the same
521 /// value `wait()` will return). Never fabricates terminal states:
522 /// this is only returned after the exit monitor observes
523 /// termination.
524 async fn terminate(
525 &self,
526 timeout: Duration,
527 ) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>>;
528
529 /// Force the proc down immediately. For in-process managers this
530 /// may abort actor tasks; for external managers this typically
531 /// sends `SIGKILL`. Also idempotent/race-safe; the terminal
532 /// outcome is the one observed by `wait()`.
533 async fn kill(&self) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>>;
534}
535
536/// A trait describing a manager of procs, responsible for bootstrapping
537/// procs on a host, and managing their lifetimes. The manager spawns an
538/// `Agent`-typed actor on each proc, responsible for managing the proc.
539#[async_trait]
540pub trait ProcManager {
541 /// Concrete handle type this manager returns.
542 type Handle: ProcHandle;
543
544 /// The preferred transport for this ProcManager.
545 /// In practice this will be [`ChannelTransport::Local`]
546 /// for testing, and [`ChannelTransport::Unix`] for external
547 /// processes.
548 fn transport(&self) -> ChannelTransport;
549
550 /// Spawn a new proc with the provided proc id. The proc
551 /// should use the provided forwarder address for messages
552 /// destined outside of the proc. The returned address accepts
553 /// messages destined for the proc.
554 ///
555 /// An agent actor is also spawned, and the corresponding actor
556 /// ref is returned.
557 async fn spawn(
558 &self,
559 proc_id: ProcId,
560 forwarder_addr: ChannelAddr,
561 ) -> Result<Self::Handle, HostError>;
562}
563
564/// Type alias for the agent actor managed by a given [`ProcManager`].
565///
566/// This resolves to the `Agent` type exposed by the manager's
567/// associated `Handle` (via [`ProcHandle::Agent`]). It provides a
568/// convenient shorthand so call sites can refer to
569/// `ActorRef<ManagerAgent<M>>` instead of the more verbose
570/// `<M::Handle as ProcHandle>::Agent`.
571///
572/// # Example
573/// ```ignore
574/// fn takes_agent_ref<M: ProcManager>(r: ActorRef<ManagerAgent<M>>) { … }
575/// ```
576pub type ManagerAgent<M> = <<M as ProcManager>::Handle as ProcHandle>::Agent; // rust issue #112792
577
578/// A ProcManager that spawns **in-process** procs (test-only).
579///
580/// The proc runs inside this same OS process; there is **no** child
581/// process to signal. Lifecycle is purely proc-level:
582/// - `terminate(timeout)`: delegates to
583/// `Proc::destroy_and_wait(timeout, None)`, which drains and, at the
584/// deadline, aborts remaining actors.
585/// - `kill()`: uses a zero deadline to emulate a forced stop via
586/// `destroy_and_wait(Duration::ZERO, None)`.
587/// - `wait()`: trivial (no external lifecycle to observe).
588///
589/// No OS signals are sent or required.
590pub struct LocalProcManager<S> {
591 procs: Arc<Mutex<HashMap<ProcId, Proc>>>,
592 spawn: S,
593}
594
595impl<S> LocalProcManager<S> {
596 /// Create a new in-process proc manager with the given agent
597 /// params.
598 pub fn new(spawn: S) -> Self {
599 Self {
600 procs: Arc::new(Mutex::new(HashMap::new())),
601 spawn,
602 }
603 }
604}
605
606#[async_trait]
607impl<S> BulkTerminate for LocalProcManager<S>
608where
609 S: Send + Sync,
610{
611 async fn terminate_all(
612 &self,
613 timeout: std::time::Duration,
614 max_in_flight: usize,
615 ) -> TerminateSummary {
616 // Snapshot procs so we don't hold the lock across awaits.
617 let procs: Vec<Proc> = {
618 let guard = self.procs.lock().await;
619 guard.values().cloned().collect()
620 };
621
622 let attempted = procs.len();
623
624 let results = stream::iter(procs.into_iter().map(|mut p| async move {
625 // For local manager, graceful proc-level stop.
626 match p.destroy_and_wait::<()>(timeout, None).await {
627 Ok(_) => true,
628 Err(e) => {
629 tracing::warn!(error=%e, "terminate_all(local): destroy_and_wait failed");
630 false
631 }
632 }
633 }))
634 .buffer_unordered(max_in_flight.max(1))
635 .collect::<Vec<bool>>()
636 .await;
637
638 let ok = results.into_iter().filter(|b| *b).count();
639
640 TerminateSummary {
641 attempted,
642 ok,
643 failed: attempted.saturating_sub(ok),
644 }
645 }
646}
647
648/// A lightweight [`ProcHandle`] for procs managed **in-process** via
649/// [`LocalProcManager`].
650///
651/// This handle wraps the minimal identifying state of a spawned proc:
652/// - its [`ProcId`] (logical identity on the host),
653/// - the proc's [`ChannelAddr`] (the address callers bind into the
654/// host router), and
655/// - the [`ActorRef`] to the agent actor hosted in the proc.
656///
657/// Unlike external handles, `LocalHandle` does **not** manage an OS
658/// child process. It provides a uniform surface (`proc_id()`,
659/// `addr()`, `agent_ref()`) and implements `terminate()`/`kill()` by
660/// calling into the underlying `Proc::destroy_and_wait`, i.e.,
661/// **proc-level** shutdown.
662///
663/// **Type parameter:** `A` is constrained by the `ProcHandle::Agent`
664/// bound (`Actor + Referable`).
665#[derive(Debug)]
666pub struct LocalHandle<A: Actor + Referable> {
667 proc_id: ProcId,
668 addr: ChannelAddr,
669 agent_ref: ActorRef<A>,
670 procs: Arc<Mutex<HashMap<ProcId, Proc>>>,
671}
672
673// Manual `Clone` to avoid requiring `A: Clone`.
674impl<A: Actor + Referable> Clone for LocalHandle<A> {
675 fn clone(&self) -> Self {
676 Self {
677 proc_id: self.proc_id.clone(),
678 addr: self.addr.clone(),
679 agent_ref: self.agent_ref.clone(),
680 procs: Arc::clone(&self.procs),
681 }
682 }
683}
684
685#[async_trait]
686impl<A: Actor + Referable> ProcHandle for LocalHandle<A> {
687 /// `Agent = A` (inherits `Actor + Referable` from the trait
688 /// bound).
689 type Agent = A;
690 type TerminalStatus = ();
691
692 fn proc_id(&self) -> &ProcId {
693 &self.proc_id
694 }
695 fn addr(&self) -> Option<ChannelAddr> {
696 Some(self.addr.clone())
697 }
698 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
699 Some(self.agent_ref.clone())
700 }
701
702 /// Always resolves immediately: a local proc is created
703 /// in-process and is usable as soon as the handle exists.
704 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
705 Ok(())
706 }
707 /// Always resolves immediately with `()`: a local proc has no
708 /// external lifecycle to await. There is no OS child process
709 /// behind this handle.
710 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
711 Ok(())
712 }
713
714 async fn terminate(
715 &self,
716 timeout: Duration,
717 ) -> Result<(), TerminateError<Self::TerminalStatus>> {
718 let mut proc = {
719 let guard = self.procs.lock().await;
720 match guard.get(self.proc_id()) {
721 Some(p) => p.clone(),
722 None => {
723 // The proc was already removed; treat as already
724 // terminal.
725 return Err(TerminateError::AlreadyTerminated(()));
726 }
727 }
728 };
729
730 // Graceful stop of the *proc* (actors) with a deadline. This
731 // will drain and then abort remaining actors at expiry.
732 let _ = proc
733 .destroy_and_wait::<()>(timeout, None)
734 .await
735 .map_err(TerminateError::Io)?;
736
737 Ok(())
738 }
739
740 async fn kill(&self) -> Result<(), TerminateError<Self::TerminalStatus>> {
741 // Forced stop == zero deadline; `destroy_and_wait` will
742 // immediately abort remaining actors and return.
743 let mut proc = {
744 let guard = self.procs.lock().await;
745 match guard.get(self.proc_id()) {
746 Some(p) => p.clone(),
747 None => return Err(TerminateError::AlreadyTerminated(())),
748 }
749 };
750
751 let _ = proc
752 .destroy_and_wait::<()>(Duration::from_millis(0), None)
753 .await
754 .map_err(TerminateError::Io)?;
755
756 Ok(())
757 }
758}
759
760/// Local, in-process ProcManager.
761///
762/// **Type bounds:**
763/// - `A: Actor + Referable + Binds<A>`
764/// - `Actor`: the agent actually runs inside the proc.
765/// - `Referable`: callers hold `ActorRef<A>` to the agent; this
766/// bound is required for typed remote refs.
767/// - `Binds<A>`: lets the runtime wire the agent's message ports.
768/// - `F: Future<Output = anyhow::Result<ActorHandle<A>>> + Send`:
769/// the spawn closure returns a Send future (we `tokio::spawn` it).
770/// - `S: Fn(Proc) -> F + Sync`: the factory can be called from
771/// concurrent contexts.
772///
773/// Result handle is `LocalHandle<A>` (whose `Agent = A` via `ProcHandle`).
774#[async_trait]
775impl<A, S, F> ProcManager for LocalProcManager<S>
776where
777 A: Actor + Referable + Binds<A>,
778 F: Future<Output = anyhow::Result<ActorHandle<A>>> + Send,
779 S: Fn(Proc) -> F + Sync,
780{
781 type Handle = LocalHandle<A>;
782
783 fn transport(&self) -> ChannelTransport {
784 ChannelTransport::Local
785 }
786
787 async fn spawn(
788 &self,
789 proc_id: ProcId,
790 forwarder_addr: ChannelAddr,
791 ) -> Result<Self::Handle, HostError> {
792 let transport = forwarder_addr.transport();
793 let proc = Proc::new(
794 proc_id.clone(),
795 MailboxClient::dial(forwarder_addr)?.into_boxed(),
796 );
797 let (proc_addr, rx) = channel::serve(ChannelAddr::any(transport))?;
798 self.procs
799 .lock()
800 .await
801 .insert(proc_id.clone(), proc.clone());
802 let _handle = proc.clone().serve(rx);
803 let agent_handle = (self.spawn)(proc)
804 .await
805 .map_err(|e| HostError::AgentSpawnFailure(proc_id.clone(), e))?;
806
807 Ok(LocalHandle {
808 proc_id,
809 addr: proc_addr,
810 agent_ref: agent_handle.bind(),
811 procs: Arc::clone(&self.procs),
812 })
813 }
814}
815
816/// A ProcManager that manages each proc as a **separate OS process**
817/// (test-only toy).
818///
819/// This implementation launches a child via `Command` and relies on
820/// `kill_on_drop(true)` so that children are SIGKILLed if the manager
821/// (or host) drops. There is **no** proc control plane (no RPC to a
822/// proc agent for shutdown) and **no** exit monitor wired here.
823/// Consequently:
824/// - `terminate()` and `kill()` return `Unsupported`.
825/// - `wait()` is trivial (no lifecycle observation).
826///
827/// It follows a simple protocol:
828///
829/// Each process is launched with the following environment variables:
830/// - `HYPERACTOR_HOST_BACKEND_ADDR`: the backend address to which all messages are forwarded,
831/// - `HYPERACTOR_HOST_PROC_ID`: the proc id to assign the launched proc, and
832/// - `HYPERACTOR_HOST_CALLBACK_ADDR`: the channel address with which to return the proc's address
833///
834/// The launched proc should also spawn an actor to manage it - the details of this are
835/// implementation dependent, and outside the scope of the process manager.
836///
837/// The function [`boot_proc`] provides a convenient implementation of the
838/// protocol.
839pub struct ProcessProcManager<A> {
840 program: std::path::PathBuf,
841 children: Arc<Mutex<HashMap<ProcId, Child>>>,
842 _phantom: PhantomData<A>,
843}
844
845impl<A> ProcessProcManager<A> {
846 /// Create a new ProcessProcManager that runs the provided
847 /// command.
848 pub fn new(program: std::path::PathBuf) -> Self {
849 Self {
850 program,
851 children: Arc::new(Mutex::new(HashMap::new())),
852 _phantom: PhantomData,
853 }
854 }
855}
856
857impl<A> Drop for ProcessProcManager<A> {
858 fn drop(&mut self) {
859 // When the manager is dropped, `children` is dropped, which
860 // drops each `Child` handle. With `kill_on_drop(true)`, the OS
861 // will SIGKILL the processes. Nothing else to do here.
862 }
863}
864
865/// A [`ProcHandle`] implementation for procs managed as separate
866/// OS processes via [`ProcessProcManager`].
867///
868/// This handle records the logical identity and connectivity of an
869/// external child process:
870/// - its [`ProcId`] (unique identity on the host),
871/// - the proc's [`ChannelAddr`] (address registered in the host
872/// router),
873/// - and the [`ActorRef`] of the agent actor spawned inside the proc.
874///
875/// Unlike [`LocalHandle`], this corresponds to a real OS process
876/// launched by the manager. In this **toy** implementation the handle
877/// does not own/monitor the `Child` and there is no shutdown control
878/// plane. It is a stable, clonable surface exposing the proc's
879/// identity, address, and agent reference so host code can interact
880/// uniformly with local/external procs. `terminate()`/`kill()` are
881/// intentionally `Unsupported` here; process cleanup relies on
882/// `cmd.kill_on_drop(true)` when launching the child (the OS will
883/// SIGKILL it if the handle is dropped).
884///
885/// The type bound `A: Actor + Referable` comes from the
886/// [`ProcHandle::Agent`] requirement: `Actor` because the agent
887/// actually runs inside the proc, and `Referable` because it must
888/// be referenceable via [`ActorRef<A>`] (i.e., safe to carry as a
889/// typed remote reference).
890#[derive(Debug)]
891pub struct ProcessHandle<A: Actor + Referable> {
892 proc_id: ProcId,
893 addr: ChannelAddr,
894 agent_ref: ActorRef<A>,
895}
896
897// Manual `Clone` to avoid requiring `A: Clone`.
898impl<A: Actor + Referable> Clone for ProcessHandle<A> {
899 fn clone(&self) -> Self {
900 Self {
901 proc_id: self.proc_id.clone(),
902 addr: self.addr.clone(),
903 agent_ref: self.agent_ref.clone(),
904 }
905 }
906}
907
908#[async_trait]
909impl<A: Actor + Referable> ProcHandle for ProcessHandle<A> {
910 /// Agent must be both an `Actor` (runs in the proc) and a
911 /// `Referable` (so it can be referenced via `ActorRef<A>`).
912 type Agent = A;
913 type TerminalStatus = ();
914
915 fn proc_id(&self) -> &ProcId {
916 &self.proc_id
917 }
918 fn addr(&self) -> Option<ChannelAddr> {
919 Some(self.addr.clone())
920 }
921 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
922 Some(self.agent_ref.clone())
923 }
924
925 /// Resolves immediately. `ProcessProcManager::spawn` returns this
926 /// handle only after the child has called back with (addr,
927 /// agent), i.e. after readiness.
928 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
929 Ok(())
930 }
931 /// Resolves immediately with `()`. This handle does not track
932 /// child lifecycle; there is no watcher in this implementation.
933 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
934 Ok(())
935 }
936
937 async fn terminate(
938 &self,
939 _deadline: Duration,
940 ) -> Result<(), TerminateError<Self::TerminalStatus>> {
941 Err(TerminateError::Unsupported)
942 }
943
944 async fn kill(&self) -> Result<(), TerminateError<Self::TerminalStatus>> {
945 Err(TerminateError::Unsupported)
946 }
947}
948
949#[async_trait]
950impl<A> ProcManager for ProcessProcManager<A>
951where
952 // Agent actor runs in the proc (`Actor`) and must be
953 // referenceable (`Referable`).
954 A: Actor + Referable,
955{
956 type Handle = ProcessHandle<A>;
957
958 fn transport(&self) -> ChannelTransport {
959 ChannelTransport::Unix
960 }
961
962 async fn spawn(
963 &self,
964 proc_id: ProcId,
965 forwarder_addr: ChannelAddr,
966 ) -> Result<Self::Handle, HostError> {
967 let (callback_addr, mut callback_rx) =
968 channel::serve(ChannelAddr::any(ChannelTransport::Unix))?;
969
970 let mut cmd = Command::new(&self.program);
971 cmd.env("HYPERACTOR_HOST_PROC_ID", proc_id.to_string());
972 cmd.env("HYPERACTOR_HOST_BACKEND_ADDR", forwarder_addr.to_string());
973 cmd.env("HYPERACTOR_HOST_CALLBACK_ADDR", callback_addr.to_string());
974
975 // Lifetime strategy: mark the child with
976 // `kill_on_drop(true)` so the OS will send SIGKILL if the
977 // handle is dropped and retain the `Child` in
978 // `self.children`, tying its lifetime to the manager/host.
979 //
980 // This is the simplest viable policy to avoid orphaned
981 // subprocesses in CI; more sophisticated lifecycle control
982 // (graceful shutdown, restart) will be layered on later.
983
984 // Kill the child when its handle is dropped.
985 cmd.kill_on_drop(true);
986
987 let child = cmd
988 .spawn()
989 .map_err(|e| HostError::ProcessSpawnFailure(proc_id.clone(), e))?;
990
991 // Retain the handle so it lives for the life of the
992 // manager/host.
993 {
994 let mut children = self.children.lock().await;
995 children.insert(proc_id.clone(), child);
996 }
997
998 // Wait for the child's callback with (addr, agent_ref)
999 let (proc_addr, agent_ref) = callback_rx.recv().await?;
1000
1001 // TODO(production): For a non-test implementation, plumb a
1002 // shutdown path:
1003 // - expose a proc-level graceful stop RPC on the agent and
1004 // implement `terminate(timeout)` by invoking it and, on
1005 // deadline, call `Child::kill()`; implement `kill()` as
1006 // immediate `Child::kill()`.
1007 // - wire an exit monitor so `wait()` resolves with a real
1008 // terminal status.
1009 Ok(ProcessHandle {
1010 proc_id,
1011 addr: proc_addr,
1012 agent_ref,
1013 })
1014 }
1015}
1016
1017impl<A> ProcessProcManager<A>
1018where
1019 // `Actor`: runs in the proc; `Referable`: referenceable via
1020 // ActorRef; `Binds<A>`: wires ports.
1021 A: Actor + Referable + Binds<A>,
1022{
1023 /// Boot a process in a ProcessProcManager<A>. Should be called from processes spawned
1024 /// by the process manager. `boot_proc` will spawn the provided actor type (with parameters)
1025 /// onto the newly created Proc, and bind its handler. This allows the user to install an agent to
1026 /// manage the proc itself.
1027 pub async fn boot_proc<S, F>(spawn: S) -> Result<Proc, HostError>
1028 where
1029 S: FnOnce(Proc) -> F,
1030 F: Future<Output = Result<ActorHandle<A>, anyhow::Error>>,
1031 {
1032 let proc_id: ProcId = Self::parse_env("HYPERACTOR_HOST_PROC_ID")?;
1033 let backend_addr: ChannelAddr = Self::parse_env("HYPERACTOR_HOST_BACKEND_ADDR")?;
1034 let callback_addr: ChannelAddr = Self::parse_env("HYPERACTOR_HOST_CALLBACK_ADDR")?;
1035 spawn_proc(proc_id, backend_addr, callback_addr, spawn).await
1036 }
1037
1038 fn parse_env<T, E>(key: &str) -> Result<T, HostError>
1039 where
1040 T: FromStr<Err = E>,
1041 E: Into<anyhow::Error>,
1042 {
1043 std::env::var(key)
1044 .map_err(|e| HostError::MissingParameter(key.to_string(), e))?
1045 .parse()
1046 .map_err(|e: E| HostError::InvalidParameter(key.to_string(), e.into()))
1047 }
1048}
1049
1050/// Spawn a proc at `proc_id` with an `A`-typed agent actor,
1051/// forwarding messages to the provided `backend_addr`,
1052/// and returning the proc's address and agent actor on
1053/// the provided `callback_addr`.
1054pub async fn spawn_proc<A, S, F>(
1055 proc_id: ProcId,
1056 backend_addr: ChannelAddr,
1057 callback_addr: ChannelAddr,
1058 spawn: S,
1059) -> Result<Proc, HostError>
1060where
1061 // `Actor`: runs in the proc; `Referable`: allows ActorRef<A>;
1062 // `Binds<A>`: wires ports
1063 A: Actor + Referable + Binds<A>,
1064 S: FnOnce(Proc) -> F,
1065 F: Future<Output = Result<ActorHandle<A>, anyhow::Error>>,
1066{
1067 let backend_transport = backend_addr.transport();
1068 let proc = Proc::new(
1069 proc_id.clone(),
1070 MailboxClient::dial(backend_addr)?.into_boxed(),
1071 );
1072
1073 let agent_handle = spawn(proc.clone())
1074 .await
1075 .map_err(|e| HostError::AgentSpawnFailure(proc_id, e))?;
1076
1077 // Finally serve the proc on the same transport as the backend address,
1078 // and call back.
1079 let (proc_addr, proc_rx) = channel::serve(ChannelAddr::any(backend_transport))?;
1080 proc.clone().serve(proc_rx);
1081 channel::dial(callback_addr)?
1082 .send((proc_addr, agent_handle.bind::<A>()))
1083 .await
1084 .map_err(ChannelError::from)?;
1085
1086 Ok(proc)
1087}
1088
1089/// Testing support for hosts. This is linked outside of cfg(test)
1090/// as it is needed by an external binary.
1091pub mod testing {
1092 use async_trait::async_trait;
1093
1094 use crate as hyperactor;
1095 use crate::Actor;
1096 use crate::ActorId;
1097 use crate::Context;
1098 use crate::Handler;
1099 use crate::OncePortRef;
1100
1101 /// Just a simple actor, available in both the bootstrap binary as well as
1102 /// hyperactor tests.
1103 #[derive(Debug, Default, Actor)]
1104 #[hyperactor::export(handlers = [OncePortRef<ActorId>])]
1105 pub struct EchoActor;
1106
1107 #[async_trait]
1108 impl Handler<OncePortRef<ActorId>> for EchoActor {
1109 async fn handle(
1110 &mut self,
1111 cx: &Context<Self>,
1112 reply: OncePortRef<ActorId>,
1113 ) -> Result<(), anyhow::Error> {
1114 reply.send(cx, cx.self_id().clone())?;
1115 Ok(())
1116 }
1117 }
1118}
1119
1120#[cfg(test)]
1121mod tests {
1122 use std::sync::Arc;
1123 use std::time::Duration;
1124
1125 use super::testing::EchoActor;
1126 use super::*;
1127 use crate::channel::ChannelTransport;
1128 use crate::clock::Clock;
1129 use crate::clock::RealClock;
1130 use crate::context::Mailbox;
1131
1132 #[tokio::test]
1133 async fn test_basic() {
1134 let proc_manager =
1135 LocalProcManager::new(|proc: Proc| async move { proc.spawn::<()>("agent", ()).await });
1136 let procs = Arc::clone(&proc_manager.procs);
1137 let (mut host, _handle) =
1138 Host::serve(proc_manager, ChannelAddr::any(ChannelTransport::Local))
1139 .await
1140 .unwrap();
1141
1142 let (proc_id1, _ref) = host.spawn("proc1".to_string()).await.unwrap();
1143 assert_eq!(
1144 proc_id1,
1145 ProcId::Direct(host.addr().clone(), "proc1".to_string())
1146 );
1147 assert!(procs.lock().await.contains_key(&proc_id1));
1148
1149 let (proc_id2, _ref) = host.spawn("proc2".to_string()).await.unwrap();
1150 assert!(procs.lock().await.contains_key(&proc_id2));
1151
1152 let proc1 = procs.lock().await.get(&proc_id1).unwrap().clone();
1153 let proc2 = procs.lock().await.get(&proc_id2).unwrap().clone();
1154
1155 // Make sure they can talk to each other:
1156 let (instance1, _handle) = proc1.instance("client").unwrap();
1157 let (instance2, _handle) = proc2.instance("client").unwrap();
1158
1159 let (port, mut rx) = instance1.mailbox().open_port();
1160
1161 port.bind().send(&instance2, "hello".to_string()).unwrap();
1162 assert_eq!(rx.recv().await.unwrap(), "hello".to_string());
1163
1164 // Make sure that the system proc is also wired in correctly.
1165 let (system_actor, _handle) = host.system_proc().instance("test").unwrap();
1166
1167 // system->proc
1168 port.bind()
1169 .send(&system_actor, "hello from the system proc".to_string())
1170 .unwrap();
1171 assert_eq!(
1172 rx.recv().await.unwrap(),
1173 "hello from the system proc".to_string()
1174 );
1175
1176 // system->system
1177 let (port, mut rx) = system_actor.mailbox().open_port();
1178 port.bind()
1179 .send(&system_actor, "hello from the system".to_string())
1180 .unwrap();
1181 assert_eq!(
1182 rx.recv().await.unwrap(),
1183 "hello from the system".to_string()
1184 );
1185
1186 // proc->system
1187 port.bind()
1188 .send(&instance1, "hello from the instance1".to_string())
1189 .unwrap();
1190 assert_eq!(
1191 rx.recv().await.unwrap(),
1192 "hello from the instance1".to_string()
1193 );
1194 }
1195
1196 #[tokio::test]
1197 // TODO: OSS: called `Result::unwrap()` on an `Err` value: ReadFailed { manifest_path: "/meta-pytorch/monarch/target/debug/deps/hyperactor-0e1fe83af739d976.resources.json", source: Os { code: 2, kind: NotFound, message: "No such file or directory" } }
1198 #[cfg_attr(not(feature = "fb"), ignore)]
1199 async fn test_process_proc_manager() {
1200 hyperactor_telemetry::initialize_logging(crate::clock::ClockKind::default());
1201
1202 // EchoActor is "agent" used to test connectivity.
1203 let process_manager = ProcessProcManager::<EchoActor>::new(
1204 buck_resources::get("monarch/hyperactor/bootstrap").unwrap(),
1205 );
1206 let (mut host, _handle) =
1207 Host::serve(process_manager, ChannelAddr::any(ChannelTransport::Unix))
1208 .await
1209 .unwrap();
1210
1211 // (1) Spawn and check invariants.
1212 assert!(matches!(host.addr().transport(), ChannelTransport::Unix));
1213 let (proc1, echo1) = host.spawn("proc1".to_string()).await.unwrap();
1214 let (proc2, echo2) = host.spawn("proc2".to_string()).await.unwrap();
1215 assert_eq!(echo1.actor_id().proc_id(), &proc1);
1216 assert_eq!(echo2.actor_id().proc_id(), &proc2);
1217
1218 // (2) Duplicate name rejection.
1219 let dup = host.spawn("proc1".to_string()).await;
1220 assert!(matches!(dup, Err(HostError::ProcExists(_))));
1221
1222 // (3) Create a standalone client proc and verify echo1 agent responds.
1223 // Request: client proc -> host frontend/router -> echo1 (proc1).
1224 // Reply: echo1 (proc1) -> host backend -> host router -> client port.
1225 // This confirms that an external proc (created via
1226 // `Proc::direct`) can address a child proc through the host,
1227 // and receive a correct reply.
1228 let client = Proc::direct(
1229 ChannelAddr::any(host.addr().transport()),
1230 "test".to_string(),
1231 )
1232 .await
1233 .unwrap();
1234 let (client_inst, _h) = client.instance("test").unwrap();
1235 let (port, rx) = client_inst.mailbox().open_once_port();
1236 echo1.send(&client_inst, port.bind()).unwrap();
1237 let id = RealClock
1238 .timeout(Duration::from_secs(5), rx.recv())
1239 .await
1240 .unwrap()
1241 .unwrap();
1242 assert_eq!(id, *echo1.actor_id());
1243
1244 // (4) Child <-> external client request -> reply:
1245 // Request: client proc (standalone via `Proc::direct`) ->
1246 // host frontend/router -> echo2 (proc2).
1247 // Reply: echo2 (proc2) -> host backend -> host router ->
1248 // client port (standalone proc).
1249 // This exercises cross-proc routing between a child and an
1250 // external client under the same host.
1251 let (port2, rx2) = client_inst.mailbox().open_once_port();
1252 echo2.send(&client_inst, port2.bind()).unwrap();
1253 let id2 = RealClock
1254 .timeout(Duration::from_secs(5), rx2.recv())
1255 .await
1256 .unwrap()
1257 .unwrap();
1258 assert_eq!(id2, *echo2.actor_id());
1259
1260 // (5) System -> child request -> cross-proc reply:
1261 // Request: system proc -> host router (frontend) -> echo1
1262 // (proc1, child).
1263 // Reply: echo1 (proc1) -> proc1 forwarder -> host backend ->
1264 // host router -> client proc direct addr (Proc::direct) ->
1265 // client port.
1266 // Because `client_inst` runs in its own proc, the reply
1267 // traverses the host (not local delivery within proc1).
1268 let (sys_inst, _h) = host.system_proc().instance("sys-client").unwrap();
1269 let (port3, rx3) = client_inst.mailbox().open_once_port();
1270 // Send from system -> child via a message that ultimately
1271 // replies to client's port
1272 echo1.send(&sys_inst, port3.bind()).unwrap();
1273 let id3 = RealClock
1274 .timeout(Duration::from_secs(5), rx3.recv())
1275 .await
1276 .unwrap()
1277 .unwrap();
1278 assert_eq!(id3, *echo1.actor_id());
1279 }
1280
1281 #[tokio::test]
1282 async fn local_ready_and_wait_are_immediate() {
1283 // Build a LocalHandle directly.
1284 let addr = ChannelAddr::any(ChannelTransport::Local);
1285 let proc_id = ProcId::Direct(addr.clone(), "p".into());
1286 let agent_ref = ActorRef::<()>::attest(proc_id.actor_id("agent", 0));
1287 let h = LocalHandle::<()> {
1288 proc_id,
1289 addr,
1290 agent_ref,
1291 procs: Arc::new(Mutex::new(HashMap::new())),
1292 };
1293
1294 // ready() resolves immediately
1295 assert!(h.ready().await.is_ok());
1296
1297 // wait() resolves immediately with unit TerminalStatus
1298 assert!(h.wait().await.is_ok());
1299
1300 // Multiple concurrent waiters both succeed
1301 let (r1, r2) = tokio::join!(h.ready(), h.ready());
1302 assert!(r1.is_ok() && r2.is_ok());
1303 }
1304
1305 // --
1306 // Fixtures for `host::spawn` tests.
1307
1308 #[derive(Debug, Clone, Copy)]
1309 enum ReadyMode {
1310 OkAfter(Duration),
1311 ErrTerminal,
1312 ErrChannelClosed,
1313 }
1314
1315 #[derive(Debug, Clone)]
1316 struct TestHandle {
1317 id: ProcId,
1318 addr: ChannelAddr,
1319 agent: ActorRef<()>,
1320 mode: ReadyMode,
1321 omit_addr: bool,
1322 omit_agent: bool,
1323 }
1324
1325 #[async_trait::async_trait]
1326 impl ProcHandle for TestHandle {
1327 type Agent = ();
1328 type TerminalStatus = ();
1329
1330 fn proc_id(&self) -> &ProcId {
1331 &self.id
1332 }
1333 fn addr(&self) -> Option<ChannelAddr> {
1334 if self.omit_addr {
1335 None
1336 } else {
1337 Some(self.addr.clone())
1338 }
1339 }
1340 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
1341 if self.omit_agent {
1342 None
1343 } else {
1344 Some(self.agent.clone())
1345 }
1346 }
1347 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
1348 match self.mode {
1349 ReadyMode::OkAfter(d) => {
1350 if !d.is_zero() {
1351 RealClock.sleep(d).await;
1352 }
1353 Ok(())
1354 }
1355 ReadyMode::ErrTerminal => Err(ReadyError::Terminal(())),
1356 ReadyMode::ErrChannelClosed => Err(ReadyError::ChannelClosed),
1357 }
1358 }
1359 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
1360 Ok(())
1361 }
1362 async fn terminate(
1363 &self,
1364 _timeout: Duration,
1365 ) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>> {
1366 Err(TerminateError::Unsupported)
1367 }
1368 async fn kill(&self) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>> {
1369 Err(TerminateError::Unsupported)
1370 }
1371 }
1372
1373 #[derive(Debug, Clone)]
1374 struct TestManager {
1375 mode: ReadyMode,
1376 omit_addr: bool,
1377 omit_agent: bool,
1378 transport: ChannelTransport,
1379 }
1380
1381 impl TestManager {
1382 fn local(mode: ReadyMode) -> Self {
1383 Self {
1384 mode,
1385 omit_addr: false,
1386 omit_agent: false,
1387 transport: ChannelTransport::Local,
1388 }
1389 }
1390 fn with_omissions(mut self, addr: bool, agent: bool) -> Self {
1391 self.omit_addr = addr;
1392 self.omit_agent = agent;
1393 self
1394 }
1395 }
1396
1397 #[async_trait::async_trait]
1398 impl ProcManager for TestManager {
1399 type Handle = TestHandle;
1400
1401 fn transport(&self) -> ChannelTransport {
1402 self.transport.clone()
1403 }
1404 async fn spawn(
1405 &self,
1406 proc_id: ProcId,
1407 forwarder_addr: ChannelAddr,
1408 ) -> Result<Self::Handle, HostError> {
1409 let agent = ActorRef::<()>::attest(proc_id.actor_id("agent", 0));
1410 Ok(TestHandle {
1411 id: proc_id,
1412 addr: forwarder_addr,
1413 agent,
1414 mode: self.mode,
1415 omit_addr: self.omit_addr,
1416 omit_agent: self.omit_agent,
1417 })
1418 }
1419 }
1420
1421 #[tokio::test]
1422 async fn host_spawn_times_out_when_configured() {
1423 let cfg = crate::config::global::lock();
1424 let _g = cfg.override_key(
1425 crate::config::HOST_SPAWN_READY_TIMEOUT,
1426 Duration::from_millis(10),
1427 );
1428
1429 let (mut host, _h) = Host::serve(
1430 TestManager::local(ReadyMode::OkAfter(Duration::from_millis(50))),
1431 ChannelAddr::any(ChannelTransport::Local),
1432 )
1433 .await
1434 .unwrap();
1435
1436 let err = host.spawn("t".into()).await.expect_err("must time out");
1437 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1438 }
1439
1440 #[tokio::test]
1441 async fn host_spawn_timeout_zero_disables_and_succeeds() {
1442 let cfg = crate::config::global::lock();
1443 let _g = cfg.override_key(
1444 crate::config::HOST_SPAWN_READY_TIMEOUT,
1445 Duration::from_secs(0),
1446 );
1447
1448 let (mut host, _h) = Host::serve(
1449 TestManager::local(ReadyMode::OkAfter(Duration::from_millis(20))),
1450 ChannelAddr::any(ChannelTransport::Local),
1451 )
1452 .await
1453 .unwrap();
1454
1455 let (pid, agent) = host.spawn("ok".into()).await.expect("must succeed");
1456 assert_eq!(agent.actor_id().proc_id(), &pid);
1457 assert!(host.procs.contains_key("ok"));
1458 }
1459
1460 #[tokio::test]
1461 async fn host_spawn_maps_channel_closed_ready_error_to_config_failure() {
1462 let (mut host, _h) = Host::serve(
1463 TestManager::local(ReadyMode::ErrChannelClosed),
1464 ChannelAddr::any(ChannelTransport::Local),
1465 )
1466 .await
1467 .unwrap();
1468
1469 let err = host.spawn("p".into()).await.expect_err("must fail");
1470 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1471 }
1472
1473 #[tokio::test]
1474 async fn host_spawn_maps_terminal_ready_error_to_config_failure() {
1475 let (mut host, _h) = Host::serve(
1476 TestManager::local(ReadyMode::ErrTerminal),
1477 ChannelAddr::any(ChannelTransport::Local),
1478 )
1479 .await
1480 .unwrap();
1481
1482 let err = host.spawn("p".into()).await.expect_err("must fail");
1483 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1484 }
1485
1486 #[tokio::test]
1487 async fn host_spawn_fails_if_ready_but_missing_addr() {
1488 let (mut host, _h) = Host::serve(
1489 TestManager::local(ReadyMode::OkAfter(Duration::ZERO)).with_omissions(true, false),
1490 ChannelAddr::any(ChannelTransport::Local),
1491 )
1492 .await
1493 .unwrap();
1494
1495 let err = host.spawn("no-addr".into()).await.expect_err("must fail");
1496 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1497 }
1498
1499 #[tokio::test]
1500 async fn host_spawn_fails_if_ready_but_missing_agent() {
1501 let (mut host, _h) = Host::serve(
1502 TestManager::local(ReadyMode::OkAfter(Duration::ZERO)).with_omissions(false, true),
1503 ChannelAddr::any(ChannelTransport::Local),
1504 )
1505 .await
1506 .unwrap();
1507
1508 let err = host.spawn("no-agent".into()).await.expect_err("must fail");
1509 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1510 }
1511}