hyperactor/host.rs
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under the BSD-style license found in the
6 * LICENSE file in the root directory of this source tree.
7 */
8
9//! This module defines [`Host`], which represents all the procs running on a host.
10//! The procs themselves are managed by an implementation of [`ProcManager`], which may,
11//! for example, fork new processes for each proc, or spawn them in the same process
12//! for testing purposes.
13//!
14//! The primary purpose of a host is to manage the lifecycle of these procs, and to
15//! serve as a single front-end for all the procs on a host, multiplexing network
16//! channels.
17//!
18//! ## Channel muxing
19//!
20//! A [`Host`] maintains a single frontend address, through which all procs are accessible
21//! through direct addressing: the id of each proc is the `ProcId::Direct(frontend_addr, proc_name)`.
22//! In the following, the frontend address is denoted by `*`. The host listens on `*` and
23//! multiplexes messages based on the proc name. When spawning procs, the host maintains
24//! backend channels with separate addresses. In the diagram `#` is the backend address of
25//! the host, while `#n` is the backend address for proc *n*. The host forwards messages
26//! to the appropriate backend channel, while procs forward messages to the host backend
27//! channel at `#`.
28//!
29//! ```text
30//! ┌────────────┐
31//! ┌───▶ proc *,1 │
32//! │ #1└────────────┘
33//! │
34//! ┌──────────┐ │ ┌────────────┐
35//! │ Host │◀───┼───▶ proc *,2 │
36//! *└──────────┘# │ #2└────────────┘
37//! │
38//! │ ┌────────────┐
39//! └───▶ proc *,3 │
40//! #3└────────────┘
41//! ```
42
43use std::collections::HashMap;
44use std::fmt;
45use std::marker::PhantomData;
46use std::str::FromStr;
47use std::sync::Arc;
48use std::time::Duration;
49
50use async_trait::async_trait;
51use futures::Future;
52use futures::StreamExt;
53use futures::stream;
54use tokio::process::Child;
55use tokio::process::Command;
56use tokio::sync::Mutex;
57
58use crate::Actor;
59use crate::ActorHandle;
60use crate::ActorId;
61use crate::ActorRef;
62use crate::PortHandle;
63use crate::Proc;
64use crate::ProcId;
65use crate::actor::Binds;
66use crate::actor::Referable;
67use crate::channel;
68use crate::channel::ChannelAddr;
69use crate::channel::ChannelError;
70use crate::channel::ChannelTransport;
71use crate::channel::Rx;
72use crate::channel::Tx;
73use crate::clock::Clock;
74use crate::clock::RealClock;
75use crate::context;
76use crate::mailbox::BoxableMailboxSender;
77use crate::mailbox::DialMailboxRouter;
78use crate::mailbox::IntoBoxedMailboxSender as _;
79use crate::mailbox::MailboxClient;
80use crate::mailbox::MailboxSender;
81use crate::mailbox::MailboxServer;
82use crate::mailbox::MailboxServerHandle;
83use crate::mailbox::MessageEnvelope;
84use crate::mailbox::Undeliverable;
85
86/// The type of error produced by host operations.
87#[derive(Debug, thiserror::Error)]
88pub enum HostError {
89 /// A channel error occurred during a host operation.
90 #[error(transparent)]
91 ChannelError(#[from] ChannelError),
92
93 /// The named proc already exists and cannot be spawned.
94 #[error("proc '{0}' already exists")]
95 ProcExists(String),
96
97 /// Failures occuring while spawning a subprocess.
98 #[error("proc '{0}' failed to spawn process: {1}")]
99 ProcessSpawnFailure(ProcId, #[source] std::io::Error),
100
101 /// Failures occuring while configuring a subprocess.
102 #[error("proc '{0}' failed to configure process: {1}")]
103 ProcessConfigurationFailure(ProcId, #[source] anyhow::Error),
104
105 /// Failures occuring while spawning a management actor in a proc.
106 #[error("failed to spawn agent on proc '{0}': {1}")]
107 AgentSpawnFailure(ProcId, #[source] anyhow::Error),
108
109 /// An input parameter was missing.
110 #[error("parameter '{0}' missing: {1}")]
111 MissingParameter(String, std::env::VarError),
112
113 /// An input parameter was invalid.
114 #[error("parameter '{0}' invalid: {1}")]
115 InvalidParameter(String, anyhow::Error),
116}
117
118/// A host, managing the lifecycle of several procs, and their backend
119/// routing, as described in this module's documentation.
120#[derive(Debug)]
121pub struct Host<M> {
122 procs: HashMap<String, ChannelAddr>,
123 frontend_addr: ChannelAddr,
124 backend_addr: ChannelAddr,
125 router: DialMailboxRouter,
126 manager: M,
127 service_proc: Proc,
128}
129
130impl<M: ProcManager> Host<M> {
131 /// Serve a host using the provided ProcManager, on the provided `addr`.
132 /// On success, the host will multiplex messages for procs on the host
133 /// on the address of the host.
134 #[tracing::instrument(skip(manager))]
135 pub async fn serve(
136 manager: M,
137 addr: ChannelAddr,
138 ) -> Result<(Self, MailboxServerHandle), HostError> {
139 let (frontend_addr, frontend_rx) = channel::serve(addr)?;
140
141 // We set up a cascade of routers: first, the outer router supports
142 // sending to the the system proc, while the dial router manages dialed
143 // connections.
144 let router = DialMailboxRouter::new();
145
146 // Establish a backend channel on the preferred transport. We currently simply
147 // serve the same router on both.
148 let (backend_addr, backend_rx) = channel::serve(ChannelAddr::any(manager.transport()))?;
149
150 // Set up a system proc. This is often used to manage the host itself.
151 let service_proc_id = ProcId::Direct(frontend_addr.clone(), "service".to_string());
152 let service_proc = Proc::new(service_proc_id.clone(), router.boxed());
153
154 tracing::info!(
155 frontend_addr = frontend_addr.to_string(),
156 backend_addr = backend_addr.to_string(),
157 service_proc_id = service_proc_id.to_string(),
158 "serving host"
159 );
160
161 let host = Host {
162 procs: HashMap::new(),
163 frontend_addr,
164 backend_addr,
165 router: router.clone(),
166 manager,
167 service_proc: service_proc.clone(),
168 };
169
170 let router = ProcOrDial {
171 proc: service_proc,
172 router,
173 };
174
175 // Serve the same router on both frontend and backend addresses.
176 let _backend_handle = router.clone().serve(backend_rx);
177 let frontend_handle = router.serve(frontend_rx);
178
179 Ok((host, frontend_handle))
180 }
181
182 /// The underlying proc manager.
183 pub fn manager(&self) -> &M {
184 &self.manager
185 }
186
187 /// The address which accepts messages destined for this host.
188 pub fn addr(&self) -> &ChannelAddr {
189 &self.frontend_addr
190 }
191
192 /// The system proc associated with this host.
193 pub fn system_proc(&self) -> &Proc {
194 &self.service_proc
195 }
196
197 /// Spawn a new process with the given `name`. On success, the proc has been
198 /// spawned, and is reachable through the returned, direct-addressed ProcId,
199 /// which will be `ProcId::Direct(self.addr(), name)`.
200 pub async fn spawn(
201 &mut self,
202 name: String,
203 config: M::Config,
204 ) -> Result<(ProcId, ActorRef<ManagerAgent<M>>), HostError> {
205 if self.procs.contains_key(&name) {
206 return Err(HostError::ProcExists(name));
207 }
208
209 let proc_id = ProcId::Direct(self.frontend_addr.clone(), name.clone());
210 let handle = self
211 .manager
212 .spawn(proc_id.clone(), self.backend_addr.clone(), config)
213 .await?;
214
215 // Await readiness (config-driven; 0s disables timeout).
216 let to: Duration = crate::config::global::get(crate::config::HOST_SPAWN_READY_TIMEOUT);
217 let ready: Result<(), HostError> = if to == Duration::from_secs(0) {
218 handle.ready().await.map_err(|e| {
219 HostError::ProcessConfigurationFailure(proc_id.clone(), anyhow::anyhow!("{e:?}"))
220 })
221 } else {
222 match RealClock.timeout(to, handle.ready()).await {
223 Ok(Ok(())) => Ok(()),
224 Ok(Err(e)) => Err(HostError::ProcessConfigurationFailure(
225 proc_id.clone(),
226 anyhow::anyhow!("{e:?}"),
227 )),
228 Err(_) => Err(HostError::ProcessConfigurationFailure(
229 proc_id.clone(),
230 anyhow::anyhow!(format!("timeout waiting for Ready after {to:?}")),
231 )),
232 }
233 };
234
235 ready?;
236
237 // After Ready, addr() + agent_ref() must be present.
238 let addr = handle.addr().ok_or_else(|| {
239 HostError::ProcessConfigurationFailure(
240 proc_id.clone(),
241 anyhow::anyhow!("proc reported Ready but no addr() available"),
242 )
243 })?;
244 let agent_ref = handle.agent_ref().ok_or_else(|| {
245 HostError::ProcessConfigurationFailure(
246 proc_id.clone(),
247 anyhow::anyhow!("proc reported Ready but no agent_ref() available"),
248 )
249 })?;
250
251 self.router.bind(proc_id.clone().into(), addr.clone());
252 self.procs.insert(name, addr);
253
254 Ok((proc_id, agent_ref))
255 }
256}
257
258/// A router used to route to the system proc, or else fall back to
259/// the dial mailbox router.
260#[derive(Debug, Clone)]
261struct ProcOrDial {
262 proc: Proc,
263 router: DialMailboxRouter,
264}
265
266impl MailboxSender for ProcOrDial {
267 fn post_unchecked(
268 &self,
269 envelope: MessageEnvelope,
270 return_handle: PortHandle<Undeliverable<MessageEnvelope>>,
271 ) {
272 if envelope.dest().actor_id().proc_id() == self.proc.proc_id() {
273 self.proc.post_unchecked(envelope, return_handle);
274 } else {
275 self.router.post_unchecked(envelope, return_handle)
276 }
277 }
278}
279
280/// Error returned by [`ProcHandle::ready`].
281#[derive(Debug, Clone)]
282pub enum ReadyError<TerminalStatus> {
283 /// The proc reached a terminal state before becoming Ready.
284 Terminal(TerminalStatus),
285 /// Implementation lost its status channel / cannot observe state.
286 ChannelClosed,
287}
288
289/// Error returned by [`ProcHandle::wait`].
290#[derive(Debug, Clone)]
291pub enum WaitError {
292 /// Implementation lost its status channel / cannot observe state.
293 ChannelClosed,
294}
295
296/// Error returned by [`ProcHandle::terminate`] and
297/// [`ProcHandle::kill`].
298///
299/// - `Unsupported`: the manager cannot perform the requested proc
300/// signaling (e.g., local/in-process manager that doesn't emulate
301/// kill).
302/// - `AlreadyTerminated(term)`: the proc was already terminal; `term`
303/// is the same value `wait()` would return.
304/// - `ChannelClosed`: the manager lost its lifecycle channel and
305/// cannot reliably observe state transitions.
306/// - `Io(err)`: manager-specific failure delivering the signal or
307/// performing shutdown (e.g., OS error on kill).
308#[derive(Debug)]
309pub enum TerminateError<TerminalStatus> {
310 /// Manager doesn't support signaling (e.g., Local manager).
311 Unsupported,
312 /// A terminal state was already reached while attempting
313 /// terminate/kill.
314 AlreadyTerminated(TerminalStatus),
315 /// Implementation lost its status channel / cannot observe state.
316 ChannelClosed,
317 /// Manager-specific failure to deliver signal or perform
318 /// shutdown.
319 Io(anyhow::Error),
320}
321
322impl<T: fmt::Debug> fmt::Display for TerminateError<T> {
323 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
324 match self {
325 TerminateError::Unsupported => write!(f, "terminate/kill unsupported by manager"),
326 TerminateError::AlreadyTerminated(st) => {
327 write!(f, "proc already terminated (status: {st:?})")
328 }
329 TerminateError::ChannelClosed => {
330 write!(f, "lifecycle channel closed; cannot observe state")
331 }
332 TerminateError::Io(err) => write!(f, "I/O error during terminate/kill: {err}"),
333 }
334 }
335}
336
337impl<T: fmt::Debug> std::error::Error for TerminateError<T> {
338 fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
339 match self {
340 TerminateError::Io(err) => Some(err.root_cause()),
341 _ => None,
342 }
343 }
344}
345
346/// Summary of results from a bulk termination attempt.
347///
348/// - `attempted`: total number of child procs for which termination
349/// was attempted.
350/// - `ok`: number of procs successfully terminated (includes those
351/// that were already in a terminal state).
352/// - `failed`: number of procs that could not be terminated (e.g.
353/// signaling errors or lost lifecycle channel).
354#[derive(Debug)]
355pub struct TerminateSummary {
356 /// Total number of child procs for which termination was
357 /// attempted.
358 pub attempted: usize,
359 /// Number of procs that successfully reached a terminal state.
360 ///
361 /// This count includes both procs that exited cleanly after
362 /// `terminate(timeout)` and those that were already in a terminal
363 /// state before termination was attempted.
364 pub ok: usize,
365 /// Number of procs that failed to terminate.
366 ///
367 /// Failures typically arise from signaling errors (e.g., OS
368 /// failure to deliver SIGTERM/SIGKILL) or a lost lifecycle
369 /// channel, meaning the manager could no longer observe state
370 /// transitions.
371 pub failed: usize,
372}
373
374impl fmt::Display for TerminateSummary {
375 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
376 write!(
377 f,
378 "attempted={} ok={} failed={}",
379 self.attempted, self.ok, self.failed
380 )
381 }
382}
383
384#[async_trait::async_trait]
385/// Trait for terminating a single proc.
386pub trait SingleTerminate: Send + Sync {
387 /// Gracefully terminate the given proc.
388 ///
389 /// Initiates a polite shutdown for each child, waits up to
390 /// `timeout` for completion, then escalates to a forceful stop
391 /// The returned [`TerminateSummary`] reports how
392 /// many children were attempted, succeeded, and failed.
393 ///
394 /// Implementation notes:
395 /// - "Polite shutdown" and "forceful stop" are intentionally
396 /// abstract. Implementors should map these to whatever
397 /// semantics they control (e.g., proc-level drain/abort, RPCs,
398 /// OS signals).
399 /// - The operation must be idempotent and tolerate races with
400 /// concurrent termination or external exits.
401 ///
402 /// # Parameters
403 /// - `timeout`: Per-child grace period before escalation to a
404 /// forceful stop.
405 /// Returns a tuple of (polite shutdown actors vec, forceful stop actors vec)
406 async fn terminate_proc(
407 &self,
408 cx: &impl context::Actor,
409 proc: &ProcId,
410 timeout: std::time::Duration,
411 ) -> Result<(Vec<ActorId>, Vec<ActorId>), anyhow::Error>;
412}
413
414/// Trait for managers that can terminate many child **units** in
415/// bulk.
416///
417/// Implementors provide a concurrency-bounded, graceful shutdown over
418/// all currently tracked children (polite stop → wait → forceful
419/// stop), returning a summary of outcomes. The exact stop/kill
420/// semantics are manager-specific: for example, an OS-process manager
421/// might send signals, while an in-process manager might drain/abort
422/// tasks.
423#[async_trait::async_trait]
424pub trait BulkTerminate: Send + Sync {
425 /// Gracefully terminate all known children.
426 ///
427 /// Initiates a polite shutdown for each child, waits up to
428 /// `timeout` for completion, then escalates to a forceful stop
429 /// for any that remain. Work may be done in parallel, capped by
430 /// `max_in_flight`. The returned [`TerminateSummary`] reports how
431 /// many children were attempted, succeeded, and failed.
432 ///
433 /// Implementation notes:
434 /// - "Polite shutdown" and "forceful stop" are intentionally
435 /// abstract. Implementors should map these to whatever
436 /// semantics they control (e.g., proc-level drain/abort, RPCs,
437 /// OS signals).
438 /// - The operation must be idempotent and tolerate races with
439 /// concurrent termination or external exits.
440 ///
441 /// # Parameters
442 /// - `timeout`: Per-child grace period before escalation to a
443 /// forceful stop.
444 /// - `max_in_flight`: Upper bound on concurrent terminations (≥
445 /// 1) to prevent resource spikes (I/O, CPU, file descriptors,
446 /// etc.).
447 async fn terminate_all(
448 &self,
449 cx: &impl context::Actor,
450 timeout: std::time::Duration,
451 max_in_flight: usize,
452 ) -> TerminateSummary;
453}
454
455// Host convenience that's available only when its manager supports
456// bulk termination.
457impl<M: ProcManager + BulkTerminate> Host<M> {
458 /// Gracefully terminate all procs spawned by this host.
459 ///
460 /// Delegates to the underlying manager’s
461 /// [`BulkTerminate::terminate_all`] implementation. Use this to
462 /// perform orderly teardown during scale-down or shutdown.
463 ///
464 /// # Parameters
465 /// - `timeout`: Per-child grace period before escalation.
466 /// - `max_in_flight`: Upper bound on concurrent terminations.
467 ///
468 /// # Returns
469 /// A [`TerminateSummary`] with counts of attempted/ok/failed
470 /// terminations.
471 pub async fn terminate_children(
472 &self,
473 cx: &impl context::Actor,
474 timeout: Duration,
475 max_in_flight: usize,
476 ) -> TerminateSummary {
477 self.manager.terminate_all(cx, timeout, max_in_flight).await
478 }
479}
480
481#[async_trait::async_trait]
482impl<M: ProcManager + SingleTerminate> SingleTerminate for Host<M> {
483 async fn terminate_proc(
484 &self,
485 cx: &impl context::Actor,
486 proc: &ProcId,
487 timeout: Duration,
488 ) -> Result<(Vec<ActorId>, Vec<ActorId>), anyhow::Error> {
489 self.manager.terminate_proc(cx, proc, timeout).await
490 }
491}
492
493/// Minimal uniform surface for a spawned-**proc** handle returned by
494/// a `ProcManager`. Each manager can return its own concrete handle,
495/// as long as it exposes these. A **proc** is the Hyperactor runtime
496/// + its actors (lifecycle controlled via `Proc` APIs such as
497/// `destroy_and_wait`). A proc **may** be hosted *inside* an OS
498/// **process**, but it is conceptually distinct:
499///
500/// - `LocalProcManager`: runs the proc **in this OS process**; there
501/// is no child process to signal. Lifecycle is entirely proc-level.
502/// - `ProcessProcManager` (test-only here): launches an **external OS
503/// process** which hosts the proc, but this toy manager does
504/// **not** wire a control plane for shutdown, nor an exit monitor.
505///
506/// This trait is therefore written in terms of the **proc**
507/// lifecycle:
508///
509/// - `ready()` resolves when the proc is Ready (mailbox bound; agent
510/// available).
511/// - `wait()` resolves with the proc's terminal status
512/// (Stopped/Killed/Failed).
513/// - `terminate()` requests a graceful shutdown of the *proc* and
514/// waits up to the deadline; managers that also own a child OS
515/// process may escalate to `SIGKILL` if the proc does not exit in
516/// time.
517/// - `kill()` requests an immediate, forced termination. For
518/// in-process procs, this may be implemented as an immediate
519/// drain/abort of actor tasks. For external procs, this is
520/// typically a `SIGKILL`.
521///
522/// The shape of the terminal value is `Self::TerminalStatus`.
523/// Managers that track rich info (exit code, signal, address, agent)
524/// can expose it; trivial managers may use `()`.
525///
526/// Managers that do not support signaling must return `Unsupported`.
527#[async_trait]
528pub trait ProcHandle: Clone + Send + Sync + 'static {
529 /// The agent actor type installed in the proc by the manager.
530 /// Must implement both:
531 /// - [`Actor`], because the agent actually runs inside the proc,
532 /// and
533 /// - [`Referable`], so callers can hold `ActorRef<Self::Agent>`.
534 type Agent: Actor + Referable;
535
536 /// The type of terminal status produced when the proc exits.
537 ///
538 /// For example, an external proc manager may use a rich status
539 /// enum (e.g. `ProcStatus`), while an in-process manager may use
540 /// a trivial unit type. This is the value returned by
541 /// [`ProcHandle::wait`] and carried by [`ReadyError::Terminal`].
542 type TerminalStatus: std::fmt::Debug + Clone + Send + Sync + 'static;
543
544 /// The proc's logical identity on this host.
545 fn proc_id(&self) -> &ProcId;
546
547 /// The proc's address (the one callers bind into the host
548 /// router).
549 fn addr(&self) -> Option<ChannelAddr>;
550
551 /// The agent actor reference hosted in the proc.
552 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>>;
553
554 /// Resolves when the proc becomes Ready. Multi-waiter,
555 /// non-consuming.
556 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>>;
557
558 /// Resolves with the terminal status (Stopped/Killed/Failed/etc).
559 /// Multi-waiter, non-consuming.
560 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError>;
561
562 /// Politely stop the proc before the deadline; managers that own
563 /// a child OS process may escalate to a forced kill at the
564 /// deadline. Idempotent and race-safe: concurrent callers
565 /// coalesce; the first terminal outcome wins and all callers
566 /// observe it via `wait()`.
567 ///
568 /// Returns the single terminal status the proc reached (the same
569 /// value `wait()` will return). Never fabricates terminal states:
570 /// this is only returned after the exit monitor observes
571 /// termination.
572 async fn terminate(
573 &self,
574 cx: &impl context::Actor,
575 timeout: Duration,
576 ) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>>;
577
578 /// Force the proc down immediately. For in-process managers this
579 /// may abort actor tasks; for external managers this typically
580 /// sends `SIGKILL`. Also idempotent/race-safe; the terminal
581 /// outcome is the one observed by `wait()`.
582 async fn kill(&self) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>>;
583}
584
585/// A trait describing a manager of procs, responsible for bootstrapping
586/// procs on a host, and managing their lifetimes. The manager spawns an
587/// `Agent`-typed actor on each proc, responsible for managing the proc.
588#[async_trait]
589pub trait ProcManager {
590 /// Concrete handle type this manager returns.
591 type Handle: ProcHandle;
592
593 /// Additional configuration for the proc, supported by this manager.
594 type Config = ();
595
596 /// The preferred transport for this ProcManager.
597 /// In practice this will be [`ChannelTransport::Local`]
598 /// for testing, and [`ChannelTransport::Unix`] for external
599 /// processes.
600 fn transport(&self) -> ChannelTransport;
601
602 /// Spawn a new proc with the provided proc id. The proc
603 /// should use the provided forwarder address for messages
604 /// destined outside of the proc. The returned address accepts
605 /// messages destined for the proc.
606 ///
607 /// An agent actor is also spawned, and the corresponding actor
608 /// ref is returned.
609 async fn spawn(
610 &self,
611 proc_id: ProcId,
612 forwarder_addr: ChannelAddr,
613 config: Self::Config,
614 ) -> Result<Self::Handle, HostError>;
615}
616
617/// Type alias for the agent actor managed by a given [`ProcManager`].
618///
619/// This resolves to the `Agent` type exposed by the manager's
620/// associated `Handle` (via [`ProcHandle::Agent`]). It provides a
621/// convenient shorthand so call sites can refer to
622/// `ActorRef<ManagerAgent<M>>` instead of the more verbose
623/// `<M::Handle as ProcHandle>::Agent`.
624///
625/// # Example
626/// ```ignore
627/// fn takes_agent_ref<M: ProcManager>(r: ActorRef<ManagerAgent<M>>) { … }
628/// ```
629pub type ManagerAgent<M> = <<M as ProcManager>::Handle as ProcHandle>::Agent; // rust issue #112792
630
631/// A ProcManager that spawns **in-process** procs (test-only).
632///
633/// The proc runs inside this same OS process; there is **no** child
634/// process to signal. Lifecycle is purely proc-level:
635/// - `terminate(timeout)`: delegates to
636/// `Proc::destroy_and_wait(timeout, None)`, which drains and, at the
637/// deadline, aborts remaining actors.
638/// - `kill()`: uses a zero deadline to emulate a forced stop via
639/// `destroy_and_wait(Duration::ZERO, None)`.
640/// - `wait()`: trivial (no external lifecycle to observe).
641///
642/// No OS signals are sent or required.
643pub struct LocalProcManager<S> {
644 procs: Arc<Mutex<HashMap<ProcId, Proc>>>,
645 spawn: S,
646}
647
648impl<S> LocalProcManager<S> {
649 /// Create a new in-process proc manager with the given agent
650 /// params.
651 pub fn new(spawn: S) -> Self {
652 Self {
653 procs: Arc::new(Mutex::new(HashMap::new())),
654 spawn,
655 }
656 }
657}
658
659#[async_trait]
660impl<S> BulkTerminate for LocalProcManager<S>
661where
662 S: Send + Sync,
663{
664 async fn terminate_all(
665 &self,
666 _cx: &impl context::Actor,
667 timeout: std::time::Duration,
668 max_in_flight: usize,
669 ) -> TerminateSummary {
670 // Snapshot procs so we don't hold the lock across awaits.
671 let procs: Vec<Proc> = {
672 let guard = self.procs.lock().await;
673 guard.values().cloned().collect()
674 };
675
676 let attempted = procs.len();
677
678 let results = stream::iter(procs.into_iter().map(|mut p| async move {
679 // For local manager, graceful proc-level stop.
680 match p.destroy_and_wait::<()>(timeout, None).await {
681 Ok(_) => true,
682 Err(e) => {
683 tracing::warn!(error=%e, "terminate_all(local): destroy_and_wait failed");
684 false
685 }
686 }
687 }))
688 .buffer_unordered(max_in_flight.max(1))
689 .collect::<Vec<bool>>()
690 .await;
691
692 let ok = results.into_iter().filter(|b| *b).count();
693
694 TerminateSummary {
695 attempted,
696 ok,
697 failed: attempted.saturating_sub(ok),
698 }
699 }
700}
701
702#[async_trait::async_trait]
703impl<S> SingleTerminate for LocalProcManager<S>
704where
705 S: Send + Sync,
706{
707 async fn terminate_proc(
708 &self,
709 _cx: &impl context::Actor,
710 proc: &ProcId,
711 timeout: std::time::Duration,
712 ) -> Result<(Vec<ActorId>, Vec<ActorId>), anyhow::Error> {
713 // Snapshot procs so we don't hold the lock across awaits.
714 let procs: Option<Proc> = {
715 let mut guard = self.procs.lock().await;
716 guard.remove(proc)
717 };
718 if let Some(mut p) = procs {
719 p.destroy_and_wait::<()>(timeout, None).await
720 } else {
721 Err(anyhow::anyhow!("proc {} doesn't exist", proc))
722 }
723 }
724}
725
726/// A lightweight [`ProcHandle`] for procs managed **in-process** via
727/// [`LocalProcManager`].
728///
729/// This handle wraps the minimal identifying state of a spawned proc:
730/// - its [`ProcId`] (logical identity on the host),
731/// - the proc's [`ChannelAddr`] (the address callers bind into the
732/// host router), and
733/// - the [`ActorRef`] to the agent actor hosted in the proc.
734///
735/// Unlike external handles, `LocalHandle` does **not** manage an OS
736/// child process. It provides a uniform surface (`proc_id()`,
737/// `addr()`, `agent_ref()`) and implements `terminate()`/`kill()` by
738/// calling into the underlying `Proc::destroy_and_wait`, i.e.,
739/// **proc-level** shutdown.
740///
741/// **Type parameter:** `A` is constrained by the `ProcHandle::Agent`
742/// bound (`Actor + Referable`).
743#[derive(Debug)]
744pub struct LocalHandle<A: Actor + Referable> {
745 proc_id: ProcId,
746 addr: ChannelAddr,
747 agent_ref: ActorRef<A>,
748 procs: Arc<Mutex<HashMap<ProcId, Proc>>>,
749}
750
751// Manual `Clone` to avoid requiring `A: Clone`.
752impl<A: Actor + Referable> Clone for LocalHandle<A> {
753 fn clone(&self) -> Self {
754 Self {
755 proc_id: self.proc_id.clone(),
756 addr: self.addr.clone(),
757 agent_ref: self.agent_ref.clone(),
758 procs: Arc::clone(&self.procs),
759 }
760 }
761}
762
763#[async_trait]
764impl<A: Actor + Referable> ProcHandle for LocalHandle<A> {
765 /// `Agent = A` (inherits `Actor + Referable` from the trait
766 /// bound).
767 type Agent = A;
768 type TerminalStatus = ();
769
770 fn proc_id(&self) -> &ProcId {
771 &self.proc_id
772 }
773 fn addr(&self) -> Option<ChannelAddr> {
774 Some(self.addr.clone())
775 }
776 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
777 Some(self.agent_ref.clone())
778 }
779
780 /// Always resolves immediately: a local proc is created
781 /// in-process and is usable as soon as the handle exists.
782 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
783 Ok(())
784 }
785 /// Always resolves immediately with `()`: a local proc has no
786 /// external lifecycle to await. There is no OS child process
787 /// behind this handle.
788 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
789 Ok(())
790 }
791
792 async fn terminate(
793 &self,
794 _cx: &impl context::Actor,
795 timeout: Duration,
796 ) -> Result<(), TerminateError<Self::TerminalStatus>> {
797 let mut proc = {
798 let guard = self.procs.lock().await;
799 match guard.get(self.proc_id()) {
800 Some(p) => p.clone(),
801 None => {
802 // The proc was already removed; treat as already
803 // terminal.
804 return Err(TerminateError::AlreadyTerminated(()));
805 }
806 }
807 };
808
809 // Graceful stop of the *proc* (actors) with a deadline. This
810 // will drain and then abort remaining actors at expiry.
811 let _ = proc
812 .destroy_and_wait::<()>(timeout, None)
813 .await
814 .map_err(TerminateError::Io)?;
815
816 Ok(())
817 }
818
819 async fn kill(&self) -> Result<(), TerminateError<Self::TerminalStatus>> {
820 // Forced stop == zero deadline; `destroy_and_wait` will
821 // immediately abort remaining actors and return.
822 let mut proc = {
823 let guard = self.procs.lock().await;
824 match guard.get(self.proc_id()) {
825 Some(p) => p.clone(),
826 None => return Err(TerminateError::AlreadyTerminated(())),
827 }
828 };
829
830 let _ = proc
831 .destroy_and_wait::<()>(Duration::from_millis(0), None)
832 .await
833 .map_err(TerminateError::Io)?;
834
835 Ok(())
836 }
837}
838
839/// Local, in-process ProcManager.
840///
841/// **Type bounds:**
842/// - `A: Actor + Referable + Binds<A>`
843/// - `Actor`: the agent actually runs inside the proc.
844/// - `Referable`: callers hold `ActorRef<A>` to the agent; this
845/// bound is required for typed remote refs.
846/// - `Binds<A>`: lets the runtime wire the agent's message ports.
847/// - `F: Future<Output = anyhow::Result<ActorHandle<A>>> + Send`:
848/// the spawn closure returns a Send future (we `tokio::spawn` it).
849/// - `S: Fn(Proc) -> F + Sync`: the factory can be called from
850/// concurrent contexts.
851///
852/// Result handle is `LocalHandle<A>` (whose `Agent = A` via `ProcHandle`).
853#[async_trait]
854impl<A, S, F> ProcManager for LocalProcManager<S>
855where
856 A: Actor + Referable + Binds<A>,
857 F: Future<Output = anyhow::Result<ActorHandle<A>>> + Send,
858 S: Fn(Proc) -> F + Sync,
859{
860 type Handle = LocalHandle<A>;
861
862 fn transport(&self) -> ChannelTransport {
863 ChannelTransport::Local
864 }
865
866 #[tracing::instrument(skip(self, _config))]
867 async fn spawn(
868 &self,
869 proc_id: ProcId,
870 forwarder_addr: ChannelAddr,
871 _config: (),
872 ) -> Result<Self::Handle, HostError> {
873 let transport = forwarder_addr.transport();
874 let proc = Proc::new(
875 proc_id.clone(),
876 MailboxClient::dial(forwarder_addr)?.into_boxed(),
877 );
878 let (proc_addr, rx) = channel::serve(ChannelAddr::any(transport))?;
879 self.procs
880 .lock()
881 .await
882 .insert(proc_id.clone(), proc.clone());
883 let _handle = proc.clone().serve(rx);
884 let agent_handle = (self.spawn)(proc)
885 .await
886 .map_err(|e| HostError::AgentSpawnFailure(proc_id.clone(), e))?;
887
888 Ok(LocalHandle {
889 proc_id,
890 addr: proc_addr,
891 agent_ref: agent_handle.bind(),
892 procs: Arc::clone(&self.procs),
893 })
894 }
895}
896
897/// A ProcManager that manages each proc as a **separate OS process**
898/// (test-only toy).
899///
900/// This implementation launches a child via `Command` and relies on
901/// `kill_on_drop(true)` so that children are SIGKILLed if the manager
902/// (or host) drops. There is **no** proc control plane (no RPC to a
903/// proc agent for shutdown) and **no** exit monitor wired here.
904/// Consequently:
905/// - `terminate()` and `kill()` return `Unsupported`.
906/// - `wait()` is trivial (no lifecycle observation).
907///
908/// It follows a simple protocol:
909///
910/// Each process is launched with the following environment variables:
911/// - `HYPERACTOR_HOST_BACKEND_ADDR`: the backend address to which all messages are forwarded,
912/// - `HYPERACTOR_HOST_PROC_ID`: the proc id to assign the launched proc, and
913/// - `HYPERACTOR_HOST_CALLBACK_ADDR`: the channel address with which to return the proc's address
914///
915/// The launched proc should also spawn an actor to manage it - the details of this are
916/// implementation dependent, and outside the scope of the process manager.
917///
918/// The function [`boot_proc`] provides a convenient implementation of the
919/// protocol.
920pub struct ProcessProcManager<A> {
921 program: std::path::PathBuf,
922 children: Arc<Mutex<HashMap<ProcId, Child>>>,
923 _phantom: PhantomData<A>,
924}
925
926impl<A> ProcessProcManager<A> {
927 /// Create a new ProcessProcManager that runs the provided
928 /// command.
929 pub fn new(program: std::path::PathBuf) -> Self {
930 Self {
931 program,
932 children: Arc::new(Mutex::new(HashMap::new())),
933 _phantom: PhantomData,
934 }
935 }
936}
937
938impl<A> Drop for ProcessProcManager<A> {
939 fn drop(&mut self) {
940 // When the manager is dropped, `children` is dropped, which
941 // drops each `Child` handle. With `kill_on_drop(true)`, the OS
942 // will SIGKILL the processes. Nothing else to do here.
943 }
944}
945
946/// A [`ProcHandle`] implementation for procs managed as separate
947/// OS processes via [`ProcessProcManager`].
948///
949/// This handle records the logical identity and connectivity of an
950/// external child process:
951/// - its [`ProcId`] (unique identity on the host),
952/// - the proc's [`ChannelAddr`] (address registered in the host
953/// router),
954/// - and the [`ActorRef`] of the agent actor spawned inside the proc.
955///
956/// Unlike [`LocalHandle`], this corresponds to a real OS process
957/// launched by the manager. In this **toy** implementation the handle
958/// does not own/monitor the `Child` and there is no shutdown control
959/// plane. It is a stable, clonable surface exposing the proc's
960/// identity, address, and agent reference so host code can interact
961/// uniformly with local/external procs. `terminate()`/`kill()` are
962/// intentionally `Unsupported` here; process cleanup relies on
963/// `cmd.kill_on_drop(true)` when launching the child (the OS will
964/// SIGKILL it if the handle is dropped).
965///
966/// The type bound `A: Actor + Referable` comes from the
967/// [`ProcHandle::Agent`] requirement: `Actor` because the agent
968/// actually runs inside the proc, and `Referable` because it must
969/// be referenceable via [`ActorRef<A>`] (i.e., safe to carry as a
970/// typed remote reference).
971#[derive(Debug)]
972pub struct ProcessHandle<A: Actor + Referable> {
973 proc_id: ProcId,
974 addr: ChannelAddr,
975 agent_ref: ActorRef<A>,
976}
977
978// Manual `Clone` to avoid requiring `A: Clone`.
979impl<A: Actor + Referable> Clone for ProcessHandle<A> {
980 fn clone(&self) -> Self {
981 Self {
982 proc_id: self.proc_id.clone(),
983 addr: self.addr.clone(),
984 agent_ref: self.agent_ref.clone(),
985 }
986 }
987}
988
989#[async_trait]
990impl<A: Actor + Referable> ProcHandle for ProcessHandle<A> {
991 /// Agent must be both an `Actor` (runs in the proc) and a
992 /// `Referable` (so it can be referenced via `ActorRef<A>`).
993 type Agent = A;
994 type TerminalStatus = ();
995
996 fn proc_id(&self) -> &ProcId {
997 &self.proc_id
998 }
999 fn addr(&self) -> Option<ChannelAddr> {
1000 Some(self.addr.clone())
1001 }
1002 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
1003 Some(self.agent_ref.clone())
1004 }
1005
1006 /// Resolves immediately. `ProcessProcManager::spawn` returns this
1007 /// handle only after the child has called back with (addr,
1008 /// agent), i.e. after readiness.
1009 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
1010 Ok(())
1011 }
1012 /// Resolves immediately with `()`. This handle does not track
1013 /// child lifecycle; there is no watcher in this implementation.
1014 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
1015 Ok(())
1016 }
1017
1018 async fn terminate(
1019 &self,
1020 _cx: &impl context::Actor,
1021 _deadline: Duration,
1022 ) -> Result<(), TerminateError<Self::TerminalStatus>> {
1023 Err(TerminateError::Unsupported)
1024 }
1025
1026 async fn kill(&self) -> Result<(), TerminateError<Self::TerminalStatus>> {
1027 Err(TerminateError::Unsupported)
1028 }
1029}
1030
1031#[async_trait]
1032impl<A> ProcManager for ProcessProcManager<A>
1033where
1034 // Agent actor runs in the proc (`Actor`) and must be
1035 // referenceable (`Referable`).
1036 A: Actor + Referable,
1037{
1038 type Handle = ProcessHandle<A>;
1039
1040 fn transport(&self) -> ChannelTransport {
1041 ChannelTransport::Unix
1042 }
1043
1044 #[tracing::instrument(skip(self, _config))]
1045 async fn spawn(
1046 &self,
1047 proc_id: ProcId,
1048 forwarder_addr: ChannelAddr,
1049 _config: (),
1050 ) -> Result<Self::Handle, HostError> {
1051 let (callback_addr, mut callback_rx) =
1052 channel::serve(ChannelAddr::any(ChannelTransport::Unix))?;
1053
1054 let mut cmd = Command::new(&self.program);
1055 cmd.env("HYPERACTOR_HOST_PROC_ID", proc_id.to_string());
1056 cmd.env("HYPERACTOR_HOST_BACKEND_ADDR", forwarder_addr.to_string());
1057 cmd.env("HYPERACTOR_HOST_CALLBACK_ADDR", callback_addr.to_string());
1058
1059 // Lifetime strategy: mark the child with
1060 // `kill_on_drop(true)` so the OS will send SIGKILL if the
1061 // handle is dropped and retain the `Child` in
1062 // `self.children`, tying its lifetime to the manager/host.
1063 //
1064 // This is the simplest viable policy to avoid orphaned
1065 // subprocesses in CI; more sophisticated lifecycle control
1066 // (graceful shutdown, restart) will be layered on later.
1067
1068 // Kill the child when its handle is dropped.
1069 cmd.kill_on_drop(true);
1070
1071 let child = cmd
1072 .spawn()
1073 .map_err(|e| HostError::ProcessSpawnFailure(proc_id.clone(), e))?;
1074
1075 // Retain the handle so it lives for the life of the
1076 // manager/host.
1077 {
1078 let mut children = self.children.lock().await;
1079 children.insert(proc_id.clone(), child);
1080 }
1081
1082 // Wait for the child's callback with (addr, agent_ref)
1083 let (proc_addr, agent_ref) = callback_rx.recv().await?;
1084
1085 // TODO(production): For a non-test implementation, plumb a
1086 // shutdown path:
1087 // - expose a proc-level graceful stop RPC on the agent and
1088 // implement `terminate(timeout)` by invoking it and, on
1089 // deadline, call `Child::kill()`; implement `kill()` as
1090 // immediate `Child::kill()`.
1091 // - wire an exit monitor so `wait()` resolves with a real
1092 // terminal status.
1093 Ok(ProcessHandle {
1094 proc_id,
1095 addr: proc_addr,
1096 agent_ref,
1097 })
1098 }
1099}
1100
1101impl<A> ProcessProcManager<A>
1102where
1103 // `Actor`: runs in the proc; `Referable`: referenceable via
1104 // ActorRef; `Binds<A>`: wires ports.
1105 A: Actor + Referable + Binds<A>,
1106{
1107 /// Boot a process in a ProcessProcManager<A>. Should be called from processes spawned
1108 /// by the process manager. `boot_proc` will spawn the provided actor type (with parameters)
1109 /// onto the newly created Proc, and bind its handler. This allows the user to install an agent to
1110 /// manage the proc itself.
1111 pub async fn boot_proc<S, F>(spawn: S) -> Result<Proc, HostError>
1112 where
1113 S: FnOnce(Proc) -> F,
1114 F: Future<Output = Result<ActorHandle<A>, anyhow::Error>>,
1115 {
1116 let proc_id: ProcId = Self::parse_env("HYPERACTOR_HOST_PROC_ID")?;
1117 let backend_addr: ChannelAddr = Self::parse_env("HYPERACTOR_HOST_BACKEND_ADDR")?;
1118 let callback_addr: ChannelAddr = Self::parse_env("HYPERACTOR_HOST_CALLBACK_ADDR")?;
1119 spawn_proc(proc_id, backend_addr, callback_addr, spawn).await
1120 }
1121
1122 fn parse_env<T, E>(key: &str) -> Result<T, HostError>
1123 where
1124 T: FromStr<Err = E>,
1125 E: Into<anyhow::Error>,
1126 {
1127 std::env::var(key)
1128 .map_err(|e| HostError::MissingParameter(key.to_string(), e))?
1129 .parse()
1130 .map_err(|e: E| HostError::InvalidParameter(key.to_string(), e.into()))
1131 }
1132}
1133
1134/// Spawn a proc at `proc_id` with an `A`-typed agent actor,
1135/// forwarding messages to the provided `backend_addr`,
1136/// and returning the proc's address and agent actor on
1137/// the provided `callback_addr`.
1138#[tracing::instrument(skip(spawn))]
1139pub async fn spawn_proc<A, S, F>(
1140 proc_id: ProcId,
1141 backend_addr: ChannelAddr,
1142 callback_addr: ChannelAddr,
1143 spawn: S,
1144) -> Result<Proc, HostError>
1145where
1146 // `Actor`: runs in the proc; `Referable`: allows ActorRef<A>;
1147 // `Binds<A>`: wires ports
1148 A: Actor + Referable + Binds<A>,
1149 S: FnOnce(Proc) -> F,
1150 F: Future<Output = Result<ActorHandle<A>, anyhow::Error>>,
1151{
1152 let backend_transport = backend_addr.transport();
1153 let proc = Proc::new(
1154 proc_id.clone(),
1155 MailboxClient::dial(backend_addr)?.into_boxed(),
1156 );
1157
1158 let agent_handle = spawn(proc.clone())
1159 .await
1160 .map_err(|e| HostError::AgentSpawnFailure(proc_id.clone(), e))?;
1161
1162 // Finally serve the proc on the same transport as the backend address,
1163 // and call back.
1164 let (proc_addr, proc_rx) = channel::serve(ChannelAddr::any(backend_transport))?;
1165 proc.clone().serve(proc_rx);
1166 channel::dial(callback_addr)?
1167 .send((proc_addr, agent_handle.bind::<A>()))
1168 .await
1169 .map_err(ChannelError::from)?;
1170
1171 Ok(proc)
1172}
1173
1174/// Testing support for hosts. This is linked outside of cfg(test)
1175/// as it is needed by an external binary.
1176pub mod testing {
1177 use async_trait::async_trait;
1178
1179 use crate as hyperactor;
1180 use crate::Actor;
1181 use crate::ActorId;
1182 use crate::Context;
1183 use crate::Handler;
1184 use crate::OncePortRef;
1185
1186 /// Just a simple actor, available in both the bootstrap binary as well as
1187 /// hyperactor tests.
1188 #[derive(Debug, Default, Actor)]
1189 #[hyperactor::export(handlers = [OncePortRef<ActorId>])]
1190 pub struct EchoActor;
1191
1192 #[async_trait]
1193 impl Handler<OncePortRef<ActorId>> for EchoActor {
1194 async fn handle(
1195 &mut self,
1196 cx: &Context<Self>,
1197 reply: OncePortRef<ActorId>,
1198 ) -> Result<(), anyhow::Error> {
1199 reply.send(cx, cx.self_id().clone())?;
1200 Ok(())
1201 }
1202 }
1203}
1204
1205#[cfg(test)]
1206mod tests {
1207 use std::sync::Arc;
1208 use std::time::Duration;
1209
1210 use super::testing::EchoActor;
1211 use super::*;
1212 use crate::channel::ChannelTransport;
1213 use crate::clock::Clock;
1214 use crate::clock::RealClock;
1215 use crate::context::Mailbox;
1216
1217 #[tokio::test]
1218 async fn test_basic() {
1219 let proc_manager =
1220 LocalProcManager::new(|proc: Proc| async move { proc.spawn::<()>("agent", ()).await });
1221 let procs = Arc::clone(&proc_manager.procs);
1222 let (mut host, _handle) =
1223 Host::serve(proc_manager, ChannelAddr::any(ChannelTransport::Local))
1224 .await
1225 .unwrap();
1226
1227 let (proc_id1, _ref) = host.spawn("proc1".to_string(), ()).await.unwrap();
1228 assert_eq!(
1229 proc_id1,
1230 ProcId::Direct(host.addr().clone(), "proc1".to_string())
1231 );
1232 assert!(procs.lock().await.contains_key(&proc_id1));
1233
1234 let (proc_id2, _ref) = host.spawn("proc2".to_string(), ()).await.unwrap();
1235 assert!(procs.lock().await.contains_key(&proc_id2));
1236
1237 let proc1 = procs.lock().await.get(&proc_id1).unwrap().clone();
1238 let proc2 = procs.lock().await.get(&proc_id2).unwrap().clone();
1239
1240 // Make sure they can talk to each other:
1241 let (instance1, _handle) = proc1.instance("client").unwrap();
1242 let (instance2, _handle) = proc2.instance("client").unwrap();
1243
1244 let (port, mut rx) = instance1.mailbox().open_port();
1245
1246 port.bind().send(&instance2, "hello".to_string()).unwrap();
1247 assert_eq!(rx.recv().await.unwrap(), "hello".to_string());
1248
1249 // Make sure that the system proc is also wired in correctly.
1250 let (system_actor, _handle) = host.system_proc().instance("test").unwrap();
1251
1252 // system->proc
1253 port.bind()
1254 .send(&system_actor, "hello from the system proc".to_string())
1255 .unwrap();
1256 assert_eq!(
1257 rx.recv().await.unwrap(),
1258 "hello from the system proc".to_string()
1259 );
1260
1261 // system->system
1262 let (port, mut rx) = system_actor.mailbox().open_port();
1263 port.bind()
1264 .send(&system_actor, "hello from the system".to_string())
1265 .unwrap();
1266 assert_eq!(
1267 rx.recv().await.unwrap(),
1268 "hello from the system".to_string()
1269 );
1270
1271 // proc->system
1272 port.bind()
1273 .send(&instance1, "hello from the instance1".to_string())
1274 .unwrap();
1275 assert_eq!(
1276 rx.recv().await.unwrap(),
1277 "hello from the instance1".to_string()
1278 );
1279 }
1280
1281 #[tokio::test]
1282 // TODO: OSS: called `Result::unwrap()` on an `Err` value: ReadFailed { manifest_path: "/meta-pytorch/monarch/target/debug/deps/hyperactor-0e1fe83af739d976.resources.json", source: Os { code: 2, kind: NotFound, message: "No such file or directory" } }
1283 #[cfg_attr(not(fbcode_build), ignore)]
1284 async fn test_process_proc_manager() {
1285 hyperactor_telemetry::initialize_logging(crate::clock::ClockKind::default());
1286
1287 // EchoActor is "agent" used to test connectivity.
1288 let process_manager = ProcessProcManager::<EchoActor>::new(
1289 buck_resources::get("monarch/hyperactor/bootstrap").unwrap(),
1290 );
1291 let (mut host, _handle) =
1292 Host::serve(process_manager, ChannelAddr::any(ChannelTransport::Unix))
1293 .await
1294 .unwrap();
1295
1296 // (1) Spawn and check invariants.
1297 assert!(matches!(host.addr().transport(), ChannelTransport::Unix));
1298 let (proc1, echo1) = host.spawn("proc1".to_string(), ()).await.unwrap();
1299 let (proc2, echo2) = host.spawn("proc2".to_string(), ()).await.unwrap();
1300 assert_eq!(echo1.actor_id().proc_id(), &proc1);
1301 assert_eq!(echo2.actor_id().proc_id(), &proc2);
1302
1303 // (2) Duplicate name rejection.
1304 let dup = host.spawn("proc1".to_string(), ()).await;
1305 assert!(matches!(dup, Err(HostError::ProcExists(_))));
1306
1307 // (3) Create a standalone client proc and verify echo1 agent responds.
1308 // Request: client proc -> host frontend/router -> echo1 (proc1).
1309 // Reply: echo1 (proc1) -> host backend -> host router -> client port.
1310 // This confirms that an external proc (created via
1311 // `Proc::direct`) can address a child proc through the host,
1312 // and receive a correct reply.
1313 let client = Proc::direct(
1314 ChannelAddr::any(host.addr().transport()),
1315 "test".to_string(),
1316 )
1317 .await
1318 .unwrap();
1319 let (client_inst, _h) = client.instance("test").unwrap();
1320 let (port, rx) = client_inst.mailbox().open_once_port();
1321 echo1.send(&client_inst, port.bind()).unwrap();
1322 let id = RealClock
1323 .timeout(Duration::from_secs(5), rx.recv())
1324 .await
1325 .unwrap()
1326 .unwrap();
1327 assert_eq!(id, *echo1.actor_id());
1328
1329 // (4) Child <-> external client request -> reply:
1330 // Request: client proc (standalone via `Proc::direct`) ->
1331 // host frontend/router -> echo2 (proc2).
1332 // Reply: echo2 (proc2) -> host backend -> host router ->
1333 // client port (standalone proc).
1334 // This exercises cross-proc routing between a child and an
1335 // external client under the same host.
1336 let (port2, rx2) = client_inst.mailbox().open_once_port();
1337 echo2.send(&client_inst, port2.bind()).unwrap();
1338 let id2 = RealClock
1339 .timeout(Duration::from_secs(5), rx2.recv())
1340 .await
1341 .unwrap()
1342 .unwrap();
1343 assert_eq!(id2, *echo2.actor_id());
1344
1345 // (5) System -> child request -> cross-proc reply:
1346 // Request: system proc -> host router (frontend) -> echo1
1347 // (proc1, child).
1348 // Reply: echo1 (proc1) -> proc1 forwarder -> host backend ->
1349 // host router -> client proc direct addr (Proc::direct) ->
1350 // client port.
1351 // Because `client_inst` runs in its own proc, the reply
1352 // traverses the host (not local delivery within proc1).
1353 let (sys_inst, _h) = host.system_proc().instance("sys-client").unwrap();
1354 let (port3, rx3) = client_inst.mailbox().open_once_port();
1355 // Send from system -> child via a message that ultimately
1356 // replies to client's port
1357 echo1.send(&sys_inst, port3.bind()).unwrap();
1358 let id3 = RealClock
1359 .timeout(Duration::from_secs(5), rx3.recv())
1360 .await
1361 .unwrap()
1362 .unwrap();
1363 assert_eq!(id3, *echo1.actor_id());
1364 }
1365
1366 #[tokio::test]
1367 async fn local_ready_and_wait_are_immediate() {
1368 // Build a LocalHandle directly.
1369 let addr = ChannelAddr::any(ChannelTransport::Local);
1370 let proc_id = ProcId::Direct(addr.clone(), "p".into());
1371 let agent_ref = ActorRef::<()>::attest(proc_id.actor_id("agent", 0));
1372 let h = LocalHandle::<()> {
1373 proc_id,
1374 addr,
1375 agent_ref,
1376 procs: Arc::new(Mutex::new(HashMap::new())),
1377 };
1378
1379 // ready() resolves immediately
1380 assert!(h.ready().await.is_ok());
1381
1382 // wait() resolves immediately with unit TerminalStatus
1383 assert!(h.wait().await.is_ok());
1384
1385 // Multiple concurrent waiters both succeed
1386 let (r1, r2) = tokio::join!(h.ready(), h.ready());
1387 assert!(r1.is_ok() && r2.is_ok());
1388 }
1389
1390 // --
1391 // Fixtures for `host::spawn` tests.
1392
1393 #[derive(Debug, Clone, Copy)]
1394 enum ReadyMode {
1395 OkAfter(Duration),
1396 ErrTerminal,
1397 ErrChannelClosed,
1398 }
1399
1400 #[derive(Debug, Clone)]
1401 struct TestHandle {
1402 id: ProcId,
1403 addr: ChannelAddr,
1404 agent: ActorRef<()>,
1405 mode: ReadyMode,
1406 omit_addr: bool,
1407 omit_agent: bool,
1408 }
1409
1410 #[async_trait::async_trait]
1411 impl ProcHandle for TestHandle {
1412 type Agent = ();
1413 type TerminalStatus = ();
1414
1415 fn proc_id(&self) -> &ProcId {
1416 &self.id
1417 }
1418 fn addr(&self) -> Option<ChannelAddr> {
1419 if self.omit_addr {
1420 None
1421 } else {
1422 Some(self.addr.clone())
1423 }
1424 }
1425 fn agent_ref(&self) -> Option<ActorRef<Self::Agent>> {
1426 if self.omit_agent {
1427 None
1428 } else {
1429 Some(self.agent.clone())
1430 }
1431 }
1432 async fn ready(&self) -> Result<(), ReadyError<Self::TerminalStatus>> {
1433 match self.mode {
1434 ReadyMode::OkAfter(d) => {
1435 if !d.is_zero() {
1436 RealClock.sleep(d).await;
1437 }
1438 Ok(())
1439 }
1440 ReadyMode::ErrTerminal => Err(ReadyError::Terminal(())),
1441 ReadyMode::ErrChannelClosed => Err(ReadyError::ChannelClosed),
1442 }
1443 }
1444 async fn wait(&self) -> Result<Self::TerminalStatus, WaitError> {
1445 Ok(())
1446 }
1447 async fn terminate(
1448 &self,
1449 _cx: &impl context::Actor,
1450 _timeout: Duration,
1451 ) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>> {
1452 Err(TerminateError::Unsupported)
1453 }
1454 async fn kill(&self) -> Result<Self::TerminalStatus, TerminateError<Self::TerminalStatus>> {
1455 Err(TerminateError::Unsupported)
1456 }
1457 }
1458
1459 #[derive(Debug, Clone)]
1460 struct TestManager {
1461 mode: ReadyMode,
1462 omit_addr: bool,
1463 omit_agent: bool,
1464 transport: ChannelTransport,
1465 }
1466
1467 impl TestManager {
1468 fn local(mode: ReadyMode) -> Self {
1469 Self {
1470 mode,
1471 omit_addr: false,
1472 omit_agent: false,
1473 transport: ChannelTransport::Local,
1474 }
1475 }
1476 fn with_omissions(mut self, addr: bool, agent: bool) -> Self {
1477 self.omit_addr = addr;
1478 self.omit_agent = agent;
1479 self
1480 }
1481 }
1482
1483 #[async_trait::async_trait]
1484 impl ProcManager for TestManager {
1485 type Handle = TestHandle;
1486
1487 fn transport(&self) -> ChannelTransport {
1488 self.transport.clone()
1489 }
1490
1491 async fn spawn(
1492 &self,
1493 proc_id: ProcId,
1494 forwarder_addr: ChannelAddr,
1495 _config: (),
1496 ) -> Result<Self::Handle, HostError> {
1497 let agent = ActorRef::<()>::attest(proc_id.actor_id("agent", 0));
1498 Ok(TestHandle {
1499 id: proc_id,
1500 addr: forwarder_addr,
1501 agent,
1502 mode: self.mode,
1503 omit_addr: self.omit_addr,
1504 omit_agent: self.omit_agent,
1505 })
1506 }
1507 }
1508
1509 #[tokio::test]
1510 async fn host_spawn_times_out_when_configured() {
1511 let cfg = crate::config::global::lock();
1512 let _g = cfg.override_key(
1513 crate::config::HOST_SPAWN_READY_TIMEOUT,
1514 Duration::from_millis(10),
1515 );
1516
1517 let (mut host, _h) = Host::serve(
1518 TestManager::local(ReadyMode::OkAfter(Duration::from_millis(50))),
1519 ChannelAddr::any(ChannelTransport::Local),
1520 )
1521 .await
1522 .unwrap();
1523
1524 let err = host.spawn("t".into(), ()).await.expect_err("must time out");
1525 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1526 }
1527
1528 #[tokio::test]
1529 async fn host_spawn_timeout_zero_disables_and_succeeds() {
1530 let cfg = crate::config::global::lock();
1531 let _g = cfg.override_key(
1532 crate::config::HOST_SPAWN_READY_TIMEOUT,
1533 Duration::from_secs(0),
1534 );
1535
1536 let (mut host, _h) = Host::serve(
1537 TestManager::local(ReadyMode::OkAfter(Duration::from_millis(20))),
1538 ChannelAddr::any(ChannelTransport::Local),
1539 )
1540 .await
1541 .unwrap();
1542
1543 let (pid, agent) = host.spawn("ok".into(), ()).await.expect("must succeed");
1544 assert_eq!(agent.actor_id().proc_id(), &pid);
1545 assert!(host.procs.contains_key("ok"));
1546 }
1547
1548 #[tokio::test]
1549 async fn host_spawn_maps_channel_closed_ready_error_to_config_failure() {
1550 let (mut host, _h) = Host::serve(
1551 TestManager::local(ReadyMode::ErrChannelClosed),
1552 ChannelAddr::any(ChannelTransport::Local),
1553 )
1554 .await
1555 .unwrap();
1556
1557 let err = host.spawn("p".into(), ()).await.expect_err("must fail");
1558 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1559 }
1560
1561 #[tokio::test]
1562 async fn host_spawn_maps_terminal_ready_error_to_config_failure() {
1563 let (mut host, _h) = Host::serve(
1564 TestManager::local(ReadyMode::ErrTerminal),
1565 ChannelAddr::any(ChannelTransport::Local),
1566 )
1567 .await
1568 .unwrap();
1569
1570 let err = host.spawn("p".into(), ()).await.expect_err("must fail");
1571 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1572 }
1573
1574 #[tokio::test]
1575 async fn host_spawn_fails_if_ready_but_missing_addr() {
1576 let (mut host, _h) = Host::serve(
1577 TestManager::local(ReadyMode::OkAfter(Duration::ZERO)).with_omissions(true, false),
1578 ChannelAddr::any(ChannelTransport::Local),
1579 )
1580 .await
1581 .unwrap();
1582
1583 let err = host
1584 .spawn("no-addr".into(), ())
1585 .await
1586 .expect_err("must fail");
1587 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1588 }
1589
1590 #[tokio::test]
1591 async fn host_spawn_fails_if_ready_but_missing_agent() {
1592 let (mut host, _h) = Host::serve(
1593 TestManager::local(ReadyMode::OkAfter(Duration::ZERO)).with_omissions(false, true),
1594 ChannelAddr::any(ChannelTransport::Local),
1595 )
1596 .await
1597 .unwrap();
1598
1599 let err = host
1600 .spawn("no-agent".into(), ())
1601 .await
1602 .expect_err("must fail");
1603 assert!(matches!(err, HostError::ProcessConfigurationFailure(_, _)));
1604 }
1605}