monarch_rdma/ibverbs_primitives.rs
1/*
2 * Portions Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under the BSD-style license found in the
6 * LICENSE file in the root directory of this source tree.
7 */
8
9/*
10 * Sections of code adapted from
11 * Copyright (c) 2016 Jon Gjengset under MIT License (MIT)
12*/
13
14//! This file contains primitive data structures for interacting with ibverbs.
15//!
16//! Primitives:
17//! - `IbverbsConfig`: Represents ibverbs specific configurations, holding parameters required to establish and
18//! manage an RDMA connection, including settings for the RDMA device, queue pair attributes, and other
19//! connection-specific parameters.
20//! - `RdmaDevice`: Represents an RDMA device, i.e. 'mlx5_0'. Contains information about the device, such as:
21//! its name, vendor ID, vendor part ID, hardware version, firmware version, node GUID, and capabilities.
22//! - `RdmaPort`: Represents information about the port of an RDMA device, including state, physical state,
23//! LID (Local Identifier), and GID (Global Identifier) information.
24//! - `RdmaMemoryRegionView`: Represents a memory region that can be registered with an RDMA device for direct
25//! memory access operations.
26//! - `RdmaOperation`: Represents the type of RDMA operation to perform (Read or Write).
27//! - `RdmaQpInfo`: Contains connection information needed to establish an RDMA connection with a remote endpoint.
28//! - `IbvWc`: Wrapper around ibverbs work completion structure, used to track the status of RDMA operations.
29use std::ffi::CStr;
30use std::fmt;
31
32use hyperactor::Named;
33use serde::Deserialize;
34use serde::Serialize;
35
36#[derive(
37 Default,
38 Copy,
39 Clone,
40 Debug,
41 Eq,
42 PartialEq,
43 Hash,
44 serde::Serialize,
45 serde::Deserialize
46)]
47#[repr(transparent)]
48pub struct Gid {
49 raw: [u8; 16],
50}
51
52impl Gid {
53 #[allow(dead_code)]
54 fn subnet_prefix(&self) -> u64 {
55 u64::from_be_bytes(self.raw[..8].try_into().unwrap())
56 }
57
58 #[allow(dead_code)]
59 fn interface_id(&self) -> u64 {
60 u64::from_be_bytes(self.raw[8..].try_into().unwrap())
61 }
62}
63impl From<rdmaxcel_sys::ibv_gid> for Gid {
64 fn from(gid: rdmaxcel_sys::ibv_gid) -> Self {
65 Self {
66 raw: unsafe { gid.raw },
67 }
68 }
69}
70
71impl From<Gid> for rdmaxcel_sys::ibv_gid {
72 fn from(mut gid: Gid) -> Self {
73 *gid.as_mut()
74 }
75}
76
77impl AsRef<rdmaxcel_sys::ibv_gid> for Gid {
78 fn as_ref(&self) -> &rdmaxcel_sys::ibv_gid {
79 unsafe { &*self.raw.as_ptr().cast::<rdmaxcel_sys::ibv_gid>() }
80 }
81}
82
83impl AsMut<rdmaxcel_sys::ibv_gid> for Gid {
84 fn as_mut(&mut self) -> &mut rdmaxcel_sys::ibv_gid {
85 unsafe { &mut *self.raw.as_mut_ptr().cast::<rdmaxcel_sys::ibv_gid>() }
86 }
87}
88
89/// Represents ibverbs specific configurations.
90///
91/// This struct holds various parameters required to establish and manage an RDMA connection.
92/// It includes settings for the RDMA device, queue pair attributes, and other connection-specific
93/// parameters.
94#[derive(Debug, Named, Clone, Serialize, Deserialize)]
95pub struct IbverbsConfig {
96 /// `device` - The RDMA device to use for the connection.
97 pub device: RdmaDevice,
98 /// `cq_entries` - The number of completion queue entries.
99 pub cq_entries: i32,
100 /// `port_num` - The physical port number on the device.
101 pub port_num: u8,
102 /// `gid_index` - The GID index for the RDMA device.
103 pub gid_index: u8,
104 /// `max_send_wr` - The maximum number of outstanding send work requests.
105 pub max_send_wr: u32,
106 /// `max_recv_wr` - The maximum number of outstanding receive work requests.
107 pub max_recv_wr: u32,
108 /// `max_send_sge` - Te maximum number of scatter/gather elements in a send work request.
109 pub max_send_sge: u32,
110 /// `max_recv_sge` - The maximum number of scatter/gather elements in a receive work request.
111 pub max_recv_sge: u32,
112 /// `path_mtu` - The path MTU (Maximum Transmission Unit) for the connection.
113 pub path_mtu: u32,
114 /// `retry_cnt` - The number of retry attempts for a connection request.
115 pub retry_cnt: u8,
116 /// `rnr_retry` - The number of retry attempts for a receiver not ready (RNR) condition.
117 pub rnr_retry: u8,
118 /// `qp_timeout` - The timeout for a queue pair operation.
119 pub qp_timeout: u8,
120 /// `min_rnr_timer` - The minimum RNR timer value.
121 pub min_rnr_timer: u8,
122 /// `max_dest_rd_atomic` - The maximum number of outstanding RDMA read operations at the destination.
123 pub max_dest_rd_atomic: u8,
124 /// `max_rd_atomic` - The maximum number of outstanding RDMA read operations at the initiator.
125 pub max_rd_atomic: u8,
126 /// `pkey_index` - The partition key index.
127 pub pkey_index: u16,
128 /// `psn` - The packet sequence number.
129 pub psn: u32,
130 /// `use_gpu_direct` - Whether to enable GPU Direct RDMA support on init.
131 pub use_gpu_direct: bool,
132 /// `hw_init_delay_ms` - The delay in milliseconds before initializing the hardware.
133 /// This is used to allow the hardware to settle before starting the first transmission.
134 pub hw_init_delay_ms: u64,
135}
136
137/// Default RDMA parameters below are based on common values from rdma-core examples
138/// (e.g. rc_pingpong). For high-performance or production use, consider tuning
139/// based on ibv_query_device() results and workload characteristics.
140impl Default for IbverbsConfig {
141 fn default() -> Self {
142 Self {
143 device: RdmaDevice::default(),
144 cq_entries: 256,
145 port_num: 1,
146 gid_index: 3,
147 max_send_wr: 128,
148 max_recv_wr: 128,
149 max_send_sge: 32,
150 max_recv_sge: 32,
151 path_mtu: rdmaxcel_sys::IBV_MTU_4096,
152 retry_cnt: 7,
153 rnr_retry: 7,
154 qp_timeout: 14, // 4.096 μs * 2^14 = ~67 ms
155 min_rnr_timer: 12,
156 max_dest_rd_atomic: 16,
157 max_rd_atomic: 16,
158 pkey_index: 0,
159 psn: rand::random::<u32>() & 0xffffff,
160 use_gpu_direct: false, // nv_peermem enabled for cuda
161 hw_init_delay_ms: 2,
162 }
163 }
164}
165
166impl std::fmt::Display for IbverbsConfig {
167 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
168 write!(
169 f,
170 "IbverbsConfig {{ device: {}, port_num: {}, gid_index: {}, max_send_wr: {}, max_recv_wr: {}, max_send_sge: {}, max_recv_sge: {}, path_mtu: {:?}, retry_cnt: {}, rnr_retry: {}, qp_timeout: {}, min_rnr_timer: {}, max_dest_rd_atomic: {}, max_rd_atomic: {}, pkey_index: {}, psn: 0x{:x} }}",
171 self.device.name(),
172 self.port_num,
173 self.gid_index,
174 self.max_send_wr,
175 self.max_recv_wr,
176 self.max_send_sge,
177 self.max_recv_sge,
178 self.path_mtu,
179 self.retry_cnt,
180 self.rnr_retry,
181 self.qp_timeout,
182 self.min_rnr_timer,
183 self.max_dest_rd_atomic,
184 self.max_rd_atomic,
185 self.pkey_index,
186 self.psn,
187 )
188 }
189}
190
191/// Represents an RDMA device in the system.
192///
193/// This struct encapsulates information about an RDMA device, including its hardware
194/// characteristics, capabilities, and port information. It provides access to device
195/// attributes such as vendor information, firmware version, and supported features.
196///
197/// # Examples
198///
199/// ```
200/// use monarch_rdma::get_all_devices;
201///
202/// let devices = get_all_devices();
203/// if let Some(device) = devices.first() {
204/// // Access device name and firmware version
205/// let device_name = device.name();
206/// let firmware_version = device.fw_ver();
207/// }
208/// ```
209#[derive(Debug, Clone, Serialize, Deserialize)]
210pub struct RdmaDevice {
211 /// `name` - The name of the RDMA device (e.g., "mlx5_0").
212 pub name: String,
213 /// `vendor_id` - The vendor ID of the device.
214 vendor_id: u32,
215 /// `vendor_part_id` - The vendor part ID of the device.
216 vendor_part_id: u32,
217 /// `hw_ver` - Hardware version of the device.
218 hw_ver: u32,
219 /// `fw_ver` - Firmware version of the device.
220 fw_ver: String,
221 /// `node_guid` - Node GUID (Globally Unique Identifier) of the device.
222 node_guid: u64,
223 /// `ports` - Vector of ports available on this device.
224 ports: Vec<RdmaPort>,
225 /// `max_qp` - Maximum number of queue pairs supported.
226 max_qp: i32,
227 /// `max_cq` - Maximum number of completion queues supported.
228 max_cq: i32,
229 /// `max_mr` - Maximum number of memory regions supported.
230 max_mr: i32,
231 /// `max_pd` - Maximum number of protection domains supported.
232 max_pd: i32,
233 /// `max_qp_wr` - Maximum number of work requests per queue pair.
234 max_qp_wr: i32,
235 /// `max_sge` - Maximum number of scatter/gather elements per work request.
236 max_sge: i32,
237}
238
239impl RdmaDevice {
240 /// Returns the name of the RDMA device.
241 pub fn name(&self) -> &String {
242 &self.name
243 }
244
245 /// Returns the first available RDMA device, if any.
246 pub fn first_available() -> Option<RdmaDevice> {
247 let devices = get_all_devices();
248 if devices.is_empty() {
249 None
250 } else {
251 Some(devices.into_iter().next().unwrap())
252 }
253 }
254
255 /// Returns the vendor ID of the RDMA device.
256 pub fn vendor_id(&self) -> u32 {
257 self.vendor_id
258 }
259
260 /// Returns the vendor part ID of the RDMA device.
261 pub fn vendor_part_id(&self) -> u32 {
262 self.vendor_part_id
263 }
264
265 /// Returns the hardware version of the RDMA device.
266 pub fn hw_ver(&self) -> u32 {
267 self.hw_ver
268 }
269
270 /// Returns the firmware version of the RDMA device.
271 pub fn fw_ver(&self) -> &String {
272 &self.fw_ver
273 }
274
275 /// Returns the node GUID of the RDMA device.
276 pub fn node_guid(&self) -> u64 {
277 self.node_guid
278 }
279
280 /// Returns a reference to the vector of ports available on the RDMA device.
281 pub fn ports(&self) -> &Vec<RdmaPort> {
282 &self.ports
283 }
284
285 /// Returns the maximum number of queue pairs supported by the RDMA device.
286 pub fn max_qp(&self) -> i32 {
287 self.max_qp
288 }
289
290 /// Returns the maximum number of completion queues supported by the RDMA device.
291 pub fn max_cq(&self) -> i32 {
292 self.max_cq
293 }
294
295 /// Returns the maximum number of memory regions supported by the RDMA device.
296 pub fn max_mr(&self) -> i32 {
297 self.max_mr
298 }
299
300 /// Returns the maximum number of protection domains supported by the RDMA device.
301 pub fn max_pd(&self) -> i32 {
302 self.max_pd
303 }
304
305 /// Returns the maximum number of work requests per queue pair supported by the RDMA device.
306 pub fn max_qp_wr(&self) -> i32 {
307 self.max_qp_wr
308 }
309
310 /// Returns the maximum number of scatter/gather elements per work request supported by the RDMA device.
311 pub fn max_sge(&self) -> i32 {
312 self.max_sge
313 }
314}
315
316impl Default for RdmaDevice {
317 fn default() -> Self {
318 get_all_devices()
319 .into_iter()
320 .next()
321 .unwrap_or_else(|| panic!("No RDMA devices found"))
322 }
323}
324
325#[derive(Debug, Clone, Serialize, Deserialize)]
326pub struct RdmaPort {
327 /// `port_num` - The physical port number on the device.
328 port_num: u8,
329 /// `state` - The current state of the port.
330 state: String,
331 /// `physical_state` - The physical state of the port.
332 physical_state: String,
333 /// `base_lid` - Base Local Identifier for the port.
334 base_lid: u16,
335 /// `lmc` - LID Mask Control.
336 lmc: u8,
337 /// `sm_lid` - Subnet Manager Local Identifier.
338 sm_lid: u16,
339 /// `capability_mask` - Capability mask of the port.
340 capability_mask: u32,
341 /// `link_layer` - The link layer type (e.g., InfiniBand, Ethernet).
342 link_layer: String,
343 /// `gid` - Global Identifier for the port.
344 gid: String,
345 /// `gid_tbl_len` - Length of the GID table.
346 gid_tbl_len: i32,
347}
348
349impl fmt::Display for RdmaDevice {
350 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
351 writeln!(f, "{}", self.name)?;
352 writeln!(f, "\tNumber of ports: {}", self.ports.len())?;
353 writeln!(f, "\tFirmware version: {}", self.fw_ver)?;
354 writeln!(f, "\tHardware version: {}", self.hw_ver)?;
355 writeln!(f, "\tNode GUID: 0x{:016x}", self.node_guid)?;
356 writeln!(f, "\tVendor ID: 0x{:x}", self.vendor_id)?;
357 writeln!(f, "\tVendor part ID: {}", self.vendor_part_id)?;
358 writeln!(f, "\tMax QPs: {}", self.max_qp)?;
359 writeln!(f, "\tMax CQs: {}", self.max_cq)?;
360 writeln!(f, "\tMax MRs: {}", self.max_mr)?;
361 writeln!(f, "\tMax PDs: {}", self.max_pd)?;
362 writeln!(f, "\tMax QP WRs: {}", self.max_qp_wr)?;
363 writeln!(f, "\tMax SGE: {}", self.max_sge)?;
364
365 for port in &self.ports {
366 write!(f, "{}", port)?;
367 }
368
369 Ok(())
370 }
371}
372
373impl fmt::Display for RdmaPort {
374 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
375 writeln!(f, "\tPort {}:", self.port_num)?;
376 writeln!(f, "\t\tState: {}", self.state)?;
377 writeln!(f, "\t\tPhysical state: {}", self.physical_state)?;
378 writeln!(f, "\t\tBase lid: {}", self.base_lid)?;
379 writeln!(f, "\t\tLMC: {}", self.lmc)?;
380 writeln!(f, "\t\tSM lid: {}", self.sm_lid)?;
381 writeln!(f, "\t\tCapability mask: 0x{:08x}", self.capability_mask)?;
382 writeln!(f, "\t\tLink layer: {}", self.link_layer)?;
383 writeln!(f, "\t\tGID: {}", self.gid)?;
384 writeln!(f, "\t\tGID table length: {}", self.gid_tbl_len)?;
385 Ok(())
386 }
387}
388
389/// Converts the given port state to a human-readable string.
390///
391/// # Arguments
392///
393/// * `state` - The port state as defined by `ffi::ibv_port_state::Type`.
394///
395/// # Returns
396///
397/// A string representation of the port state.
398pub fn get_port_state_str(state: rdmaxcel_sys::ibv_port_state::Type) -> String {
399 // SAFETY: We are calling a C function that returns a C string.
400 unsafe {
401 let c_str = rdmaxcel_sys::ibv_port_state_str(state);
402 if c_str.is_null() {
403 return "Unknown".to_string();
404 }
405 CStr::from_ptr(c_str).to_string_lossy().into_owned()
406 }
407}
408
409/// Converts the given physical state to a human-readable string.
410///
411/// # Arguments
412///
413/// * `phys_state` - The physical state as a `u8`.
414///
415/// # Returns
416///
417/// A string representation of the physical state.
418pub fn get_port_phy_state_str(phys_state: u8) -> String {
419 match phys_state {
420 1 => "Sleep".to_string(),
421 2 => "Polling".to_string(),
422 3 => "Disabled".to_string(),
423 4 => "PortConfigurationTraining".to_string(),
424 5 => "LinkUp".to_string(),
425 6 => "LinkErrorRecovery".to_string(),
426 7 => "PhyTest".to_string(),
427 _ => "No state change".to_string(),
428 }
429}
430
431/// Converts the given link layer type to a human-readable string.
432///
433/// # Arguments
434///
435/// * `link_layer` - The link layer type as a `u8`.
436///
437/// # Returns
438///
439/// A string representation of the link layer type.
440pub fn get_link_layer_str(link_layer: u8) -> String {
441 match link_layer {
442 1 => "InfiniBand".to_string(),
443 2 => "Ethernet".to_string(),
444 _ => "Unknown".to_string(),
445 }
446}
447
448/// Formats a GID (Global Identifier) into a human-readable string.
449///
450/// # Arguments
451///
452/// * `gid` - A reference to a 16-byte array representing the GID.
453///
454/// # Returns
455///
456/// A formatted string representation of the GID.
457pub fn format_gid(gid: &[u8; 16]) -> String {
458 format!(
459 "{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}",
460 gid[0],
461 gid[1],
462 gid[2],
463 gid[3],
464 gid[4],
465 gid[5],
466 gid[6],
467 gid[7],
468 gid[8],
469 gid[9],
470 gid[10],
471 gid[11],
472 gid[12],
473 gid[13],
474 gid[14],
475 gid[15]
476 )
477}
478
479/// Retrieves information about all available RDMA devices in the system.
480///
481/// This function queries the system for all available RDMA devices and returns
482/// detailed information about each device, including its capabilities, ports,
483/// and attributes.
484///
485/// # Returns
486///
487/// A vector of `RdmaDevice` structures, each representing an RDMA device in the system.
488/// Returns an empty vector if no devices are found or if there was an error querying
489/// the devices.
490pub fn get_all_devices() -> Vec<RdmaDevice> {
491 let mut devices = Vec::new();
492
493 // SAFETY: We are calling several C functions from libibverbs.
494 unsafe {
495 let mut num_devices = 0;
496 let device_list = rdmaxcel_sys::ibv_get_device_list(&mut num_devices);
497 if device_list.is_null() || num_devices == 0 {
498 return devices;
499 }
500
501 for i in 0..num_devices {
502 let device = *device_list.add(i as usize);
503 if device.is_null() {
504 continue;
505 }
506
507 let context = rdmaxcel_sys::ibv_open_device(device);
508 if context.is_null() {
509 continue;
510 }
511
512 let device_name = CStr::from_ptr(rdmaxcel_sys::ibv_get_device_name(device))
513 .to_string_lossy()
514 .into_owned();
515
516 let mut device_attr = rdmaxcel_sys::ibv_device_attr::default();
517 if rdmaxcel_sys::ibv_query_device(context, &mut device_attr) != 0 {
518 rdmaxcel_sys::ibv_close_device(context);
519 continue;
520 }
521
522 let fw_ver = CStr::from_ptr(device_attr.fw_ver.as_ptr())
523 .to_string_lossy()
524 .into_owned();
525
526 let mut rdma_device = RdmaDevice {
527 name: device_name,
528 vendor_id: device_attr.vendor_id,
529 vendor_part_id: device_attr.vendor_part_id,
530 hw_ver: device_attr.hw_ver,
531 fw_ver,
532 node_guid: device_attr.node_guid,
533 ports: Vec::new(),
534 max_qp: device_attr.max_qp,
535 max_cq: device_attr.max_cq,
536 max_mr: device_attr.max_mr,
537 max_pd: device_attr.max_pd,
538 max_qp_wr: device_attr.max_qp_wr,
539 max_sge: device_attr.max_sge,
540 };
541
542 for port_num in 1..=device_attr.phys_port_cnt {
543 let mut port_attr = rdmaxcel_sys::ibv_port_attr::default();
544 if rdmaxcel_sys::ibv_query_port(
545 context,
546 port_num,
547 &mut port_attr as *mut rdmaxcel_sys::ibv_port_attr as *mut _,
548 ) != 0
549 {
550 continue;
551 }
552 let state = get_port_state_str(port_attr.state);
553 let physical_state = get_port_phy_state_str(port_attr.phys_state);
554
555 let link_layer = get_link_layer_str(port_attr.link_layer);
556
557 let mut gid = rdmaxcel_sys::ibv_gid::default();
558 let gid_str = if rdmaxcel_sys::ibv_query_gid(context, port_num, 0, &mut gid) == 0 {
559 format_gid(&gid.raw)
560 } else {
561 "N/A".to_string()
562 };
563
564 let rdma_port = RdmaPort {
565 port_num,
566 state,
567 physical_state,
568 base_lid: port_attr.lid,
569 lmc: port_attr.lmc,
570 sm_lid: port_attr.sm_lid,
571 capability_mask: port_attr.port_cap_flags,
572 link_layer,
573 gid: gid_str,
574 gid_tbl_len: port_attr.gid_tbl_len,
575 };
576
577 rdma_device.ports.push(rdma_port);
578 }
579
580 devices.push(rdma_device);
581 rdmaxcel_sys::ibv_close_device(context);
582 }
583
584 rdmaxcel_sys::ibv_free_device_list(device_list);
585 }
586
587 devices
588}
589
590/// Checks if ibverbs devices can be retrieved successfully.
591///
592/// This function attempts to retrieve the list of RDMA devices using the
593/// `ibv_get_device_list` function from the ibverbs library. It returns `true`
594/// if devices are found, and `false` otherwise.
595///
596/// # Returns
597///
598/// `true` if devices are successfully retrieved, `false` otherwise.
599pub fn ibverbs_supported() -> bool {
600 // SAFETY: We are calling a C function from libibverbs.
601 unsafe {
602 let mut num_devices = 0;
603 let device_list = rdmaxcel_sys::ibv_get_device_list(&mut num_devices);
604 if !device_list.is_null() {
605 rdmaxcel_sys::ibv_free_device_list(device_list);
606 }
607 num_devices > 0
608 }
609}
610
611/// Represents a view of a memory region that can be registered with an RDMA device.
612///
613/// This is a 'view' of a registered Memory Region, allowing multiple views into a single
614/// large MR registration. This is commonly used with PyTorch's caching allocator, which
615/// reserves large memory blocks and provides different data pointers into that space.
616///
617/// # Example
618/// PyTorch Caching Allocator creates a 16GB segment at virtual address `0x01000000`.
619/// The underlying Memory Region registers 16GB but at RDMA address `0x0`.
620/// To access virtual address `0x01100000`, we return a view at RDMA address `0x100000`.
621///
622/// # Safety
623/// The caller must ensure the memory remains valid and is not freed, moved, or
624/// overwritten while RDMA operations are in progress.
625
626#[derive(
627 Debug,
628 PartialEq,
629 Eq,
630 std::hash::Hash,
631 Serialize,
632 Deserialize,
633 Clone,
634 Copy
635)]
636pub struct RdmaMemoryRegionView {
637 // id should be unique with a given rdmam manager
638 pub id: usize,
639 /// Virtual address in the process address space.
640 /// This is the pointer/address as seen by the local process.
641 pub virtual_addr: usize,
642 /// Memory address assigned after Memory Region (MR) registration.
643 /// This is the address may be offset a base MR addr.
644 pub rdma_addr: usize,
645 pub size: usize,
646 pub lkey: u32,
647 pub rkey: u32,
648}
649
650// SAFETY: RdmaMemoryRegionView can be safely sent between threads because it only
651// contains address and size information without any thread-local state. However,
652// this DOES NOT provide any protection against data races in the underlying memory.
653// If one thread initiates an RDMA operation while another thread modifies the same
654// memory region, undefined behavior will occur. The caller is responsible for proper
655// synchronization of access to the underlying memory.
656unsafe impl Send for RdmaMemoryRegionView {}
657
658// SAFETY: RdmaMemoryRegionView is safe for concurrent access by multiple threads
659// as it only provides a view into memory without modifying its own state. However,
660// it provides NO PROTECTION against concurrent access to the underlying memory region.
661// The caller must ensure proper synchronization when:
662// 1. Initiating RDMA operations while local code reads/writes the same memory
663// 2. Performing multiple overlapping RDMA operations on the same memory region
664// 3. Freeing or reallocating memory that has in-flight RDMA operations
665unsafe impl Sync for RdmaMemoryRegionView {}
666
667impl RdmaMemoryRegionView {
668 /// Creates a new `RdmaMemoryRegionView` with the given address and size.
669 pub fn new(
670 id: usize,
671 virtual_addr: usize,
672 rdma_addr: usize,
673 size: usize,
674 lkey: u32,
675 rkey: u32,
676 ) -> Self {
677 Self {
678 id,
679 virtual_addr,
680 rdma_addr,
681 size,
682 lkey,
683 rkey,
684 }
685 }
686}
687
688/// Enum representing the common RDMA operations.
689///
690/// This provides a more ergonomic interface to the underlying ibv_wr_opcode types.
691/// RDMA operations allow for direct memory access between two machines without
692/// involving the CPU of the target machine.
693///
694/// # Variants
695///
696/// * `Write` - Represents an RDMA write operation where data is written from the local
697/// memory to a remote memory region.
698/// * `Read` - Represents an RDMA read operation where data is read from a remote memory
699/// region into the local memory.
700#[derive(Debug, Clone, Copy, PartialEq, Eq)]
701pub enum RdmaOperation {
702 /// RDMA write operations
703 Write,
704 WriteWithImm,
705 /// RDMA read operation
706 Read,
707 /// RDMA recv operation
708 Recv,
709}
710
711impl From<RdmaOperation> for rdmaxcel_sys::ibv_wr_opcode::Type {
712 fn from(op: RdmaOperation) -> Self {
713 match op {
714 RdmaOperation::Write => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE,
715 RdmaOperation::WriteWithImm => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE_WITH_IMM,
716 RdmaOperation::Read => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_READ,
717 RdmaOperation::Recv => panic!("Invalid wr opcode"),
718 }
719 }
720}
721
722impl From<rdmaxcel_sys::ibv_wc_opcode::Type> for RdmaOperation {
723 fn from(op: rdmaxcel_sys::ibv_wc_opcode::Type) -> Self {
724 match op {
725 rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_WRITE => RdmaOperation::Write,
726 rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_READ => RdmaOperation::Read,
727 _ => panic!("Unsupported operation type"),
728 }
729 }
730}
731
732/// Contains information needed to establish an RDMA queue pair with a remote endpoint.
733///
734/// `RdmaQpInfo` encapsulates all the necessary information to establish a queue pair
735/// with a remote RDMA device. This includes queue pair number, LID (Local Identifier),
736/// GID (Global Identifier), remote memory address, remote key, and packet sequence number.
737#[derive(Default, Named, Clone, serde::Serialize, serde::Deserialize)]
738pub struct RdmaQpInfo {
739 /// `qp_num` - Queue Pair Number, uniquely identifies a queue pair on the remote device
740 pub qp_num: u32,
741 /// `lid` - Local Identifier, used for addressing in InfiniBand subnet
742 pub lid: u16,
743 /// `gid` - Global Identifier, used for routing across subnets (similar to IPv6 address)
744 pub gid: Option<Gid>,
745 /// `psn` - Packet Sequence Number, used for ordering packets
746 pub psn: u32,
747}
748
749impl std::fmt::Debug for RdmaQpInfo {
750 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
751 write!(
752 f,
753 "RdmaQpInfo {{ qp_num: {}, lid: {}, gid: {:?}, psn: 0x{:x} }}",
754 self.qp_num, self.lid, self.gid, self.psn
755 )
756 }
757}
758
759/// Wrapper around ibv_wc (ibverbs work completion).
760///
761/// This exposes only the public fields of rdmaxcel_sys::ibv_wc, allowing us to more easily
762/// interact with it from Rust. Work completions are used to track the status of
763/// RDMA operations and are generated when an operation completes.
764#[derive(Debug, Named, Clone, serde::Serialize, serde::Deserialize)]
765pub struct IbvWc {
766 /// `wr_id` - Work Request ID, used to identify the completed operation
767 wr_id: u64,
768 /// `len` - Length of the data transferred
769 len: usize,
770 /// `valid` - Whether the work completion is valid
771 valid: bool,
772 /// `error` - Error information if the operation failed
773 error: Option<(rdmaxcel_sys::ibv_wc_status::Type, u32)>,
774 /// `opcode` - Type of operation that completed (read, write, etc.)
775 opcode: rdmaxcel_sys::ibv_wc_opcode::Type,
776 /// `bytes` - Immediate data (if any)
777 bytes: Option<u32>,
778 /// `qp_num` - Queue Pair Number
779 qp_num: u32,
780 /// `src_qp` - Source Queue Pair Number
781 src_qp: u32,
782 /// `pkey_index` - Partition Key Index
783 pkey_index: u16,
784 /// `slid` - Source LID
785 slid: u16,
786 /// `sl` - Service Level
787 sl: u8,
788 /// `dlid_path_bits` - Destination LID Path Bits
789 dlid_path_bits: u8,
790}
791
792impl From<rdmaxcel_sys::ibv_wc> for IbvWc {
793 fn from(wc: rdmaxcel_sys::ibv_wc) -> Self {
794 IbvWc {
795 wr_id: wc.wr_id(),
796 len: wc.len(),
797 valid: wc.is_valid(),
798 error: wc.error(),
799 opcode: wc.opcode(),
800 bytes: wc.imm_data(),
801 qp_num: wc.qp_num,
802 src_qp: wc.src_qp,
803 pkey_index: wc.pkey_index,
804 slid: wc.slid,
805 sl: wc.sl,
806 dlid_path_bits: wc.dlid_path_bits,
807 }
808 }
809}
810
811impl IbvWc {
812 /// Returns the Work Request ID associated with this work completion.
813 ///
814 /// The Work Request ID is used to identify the specific operation that completed.
815 /// It is set by the application when posting the work request and is returned
816 /// unchanged in the work completion.
817 pub fn wr_id(&self) -> u64 {
818 self.wr_id
819 }
820
821 /// Returns whether this work completion is valid.
822 ///
823 /// A valid work completion indicates that the operation completed successfully.
824 /// If false, the `error` field may contain additional information about the failure.
825 pub fn is_valid(&self) -> bool {
826 self.valid
827 }
828}
829
830#[cfg(test)]
831mod tests {
832 use super::*;
833
834 #[test]
835 fn test_get_all_devices() {
836 // Skip test if RDMA devices are not available
837 let devices = get_all_devices();
838 if devices.is_empty() {
839 println!("Skipping test: RDMA devices not available");
840 return;
841 }
842 // Basic validation of first device
843 let device = &devices[0];
844 assert!(!device.name().is_empty(), "device name should not be empty");
845 assert!(
846 !device.ports().is_empty(),
847 "device should have at least one port"
848 );
849 }
850
851 #[test]
852 fn test_first_available() {
853 // Skip test if RDMA is not available
854 let devices = get_all_devices();
855 if devices.is_empty() {
856 println!("Skipping test: RDMA devices not available");
857 return;
858 }
859 // Basic validation of first device
860 let device = &devices[0];
861
862 let dev = device;
863 // Verify getters return expected values
864 assert_eq!(dev.vendor_id(), dev.vendor_id);
865 assert_eq!(dev.vendor_part_id(), dev.vendor_part_id);
866 assert_eq!(dev.hw_ver(), dev.hw_ver);
867 assert_eq!(dev.fw_ver(), &dev.fw_ver);
868 assert_eq!(dev.node_guid(), dev.node_guid);
869 assert_eq!(dev.max_qp(), dev.max_qp);
870 assert_eq!(dev.max_cq(), dev.max_cq);
871 assert_eq!(dev.max_mr(), dev.max_mr);
872 assert_eq!(dev.max_pd(), dev.max_pd);
873 assert_eq!(dev.max_qp_wr(), dev.max_qp_wr);
874 assert_eq!(dev.max_sge(), dev.max_sge);
875 }
876
877 #[test]
878 fn test_device_display() {
879 if let Some(device) = RdmaDevice::first_available() {
880 let display_output = format!("{}", device);
881 assert!(
882 display_output.contains(&device.name),
883 "display should include device name"
884 );
885 assert!(
886 display_output.contains(&device.fw_ver),
887 "display should include firmware version"
888 );
889 }
890 }
891
892 #[test]
893 fn test_port_display() {
894 if let Some(device) = RdmaDevice::first_available() {
895 if !device.ports().is_empty() {
896 let port = &device.ports()[0];
897 let display_output = format!("{}", port);
898 assert!(
899 display_output.contains(&port.state),
900 "display should include port state"
901 );
902 assert!(
903 display_output.contains(&port.link_layer),
904 "display should include link layer"
905 );
906 }
907 }
908 }
909
910 #[test]
911 fn test_rdma_operation_conversion() {
912 assert_eq!(
913 rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE,
914 rdmaxcel_sys::ibv_wr_opcode::Type::from(RdmaOperation::Write)
915 );
916 assert_eq!(
917 rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_READ,
918 rdmaxcel_sys::ibv_wr_opcode::Type::from(RdmaOperation::Read)
919 );
920
921 assert_eq!(
922 RdmaOperation::Write,
923 RdmaOperation::from(rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_WRITE)
924 );
925 assert_eq!(
926 RdmaOperation::Read,
927 RdmaOperation::from(rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_READ)
928 );
929 }
930
931 #[test]
932 fn test_rdma_endpoint() {
933 let endpoint = RdmaQpInfo {
934 qp_num: 42,
935 lid: 123,
936 gid: None,
937 psn: 0x5678,
938 };
939
940 let debug_str = format!("{:?}", endpoint);
941 assert!(debug_str.contains("qp_num: 42"));
942 assert!(debug_str.contains("lid: 123"));
943 assert!(debug_str.contains("psn: 0x5678"));
944 }
945
946 #[test]
947 fn test_ibv_wc() {
948 let mut wc = rdmaxcel_sys::ibv_wc::default();
949
950 // SAFETY: modifies private fields through pointer manipulation
951 unsafe {
952 // Cast to pointer and modify the fields directly
953 let wc_ptr = &mut wc as *mut rdmaxcel_sys::ibv_wc as *mut u8;
954
955 // Set wr_id (at offset 0, u64)
956 *(wc_ptr as *mut u64) = 42;
957
958 // Set status to SUCCESS (at offset 8, u32)
959 *(wc_ptr.add(8) as *mut i32) = rdmaxcel_sys::ibv_wc_status::IBV_WC_SUCCESS as i32;
960 }
961 let ibv_wc = IbvWc::from(wc);
962 assert_eq!(ibv_wc.wr_id(), 42);
963 assert!(ibv_wc.is_valid());
964 }
965
966 #[test]
967 fn test_format_gid() {
968 let gid = [
969 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
970 0x77, 0x88,
971 ];
972
973 let formatted = format_gid(&gid);
974 assert_eq!(formatted, "1234:5678:9abc:def0:1122:3344:5566:7788");
975 }
976}