monarch_rdma/ibverbs_primitives.rs
1/*
2 * Portions Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under the BSD-style license found in the
6 * LICENSE file in the root directory of this source tree.
7 */
8
9/*
10 * Sections of code adapted from
11 * Copyright (c) 2016 Jon Gjengset under MIT License (MIT)
12*/
13
14//! This file contains primitive data structures for interacting with ibverbs.
15//!
16//! Primitives:
17//! - `IbverbsConfig`: Represents ibverbs specific configurations, holding parameters required to establish and
18//! manage an RDMA connection, including settings for the RDMA device, queue pair attributes, and other
19//! connection-specific parameters.
20//! - `RdmaDevice`: Represents an RDMA device, i.e. 'mlx5_0'. Contains information about the device, such as:
21//! its name, vendor ID, vendor part ID, hardware version, firmware version, node GUID, and capabilities.
22//! - `RdmaPort`: Represents information about the port of an RDMA device, including state, physical state,
23//! LID (Local Identifier), and GID (Global Identifier) information.
24//! - `RdmaMemoryRegionView`: Represents a memory region that can be registered with an RDMA device for direct
25//! memory access operations.
26//! - `RdmaOperation`: Represents the type of RDMA operation to perform (Read or Write).
27//! - `RdmaQpInfo`: Contains connection information needed to establish an RDMA connection with a remote endpoint.
28//! - `IbvWc`: Wrapper around ibverbs work completion structure, used to track the status of RDMA operations.
29use std::ffi::CStr;
30use std::fmt;
31use std::sync::OnceLock;
32
33use serde::Deserialize;
34use serde::Serialize;
35use typeuri::Named;
36
37#[derive(
38 Default,
39 Copy,
40 Clone,
41 Debug,
42 Eq,
43 PartialEq,
44 Hash,
45 serde::Serialize,
46 serde::Deserialize
47)]
48#[repr(transparent)]
49pub struct Gid {
50 raw: [u8; 16],
51}
52
53impl Gid {
54 #[allow(dead_code)]
55 fn subnet_prefix(&self) -> u64 {
56 u64::from_be_bytes(self.raw[..8].try_into().unwrap())
57 }
58
59 #[allow(dead_code)]
60 fn interface_id(&self) -> u64 {
61 u64::from_be_bytes(self.raw[8..].try_into().unwrap())
62 }
63}
64impl From<rdmaxcel_sys::ibv_gid> for Gid {
65 fn from(gid: rdmaxcel_sys::ibv_gid) -> Self {
66 Self {
67 raw: unsafe { gid.raw },
68 }
69 }
70}
71
72impl From<Gid> for rdmaxcel_sys::ibv_gid {
73 fn from(mut gid: Gid) -> Self {
74 *gid.as_mut()
75 }
76}
77
78impl AsRef<rdmaxcel_sys::ibv_gid> for Gid {
79 fn as_ref(&self) -> &rdmaxcel_sys::ibv_gid {
80 unsafe { &*self.raw.as_ptr().cast::<rdmaxcel_sys::ibv_gid>() }
81 }
82}
83
84impl AsMut<rdmaxcel_sys::ibv_gid> for Gid {
85 fn as_mut(&mut self) -> &mut rdmaxcel_sys::ibv_gid {
86 unsafe { &mut *self.raw.as_mut_ptr().cast::<rdmaxcel_sys::ibv_gid>() }
87 }
88}
89
90/// Queue pair type for RDMA operations.
91///
92/// Controls whether to use standard ibverbs queue pairs or mlx5dv extended queue pairs.
93/// Auto mode automatically selects based on device capabilities.
94#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq)]
95pub enum RdmaQpType {
96 /// Auto-detect based on device capabilities
97 Auto,
98 /// Force standard ibverbs queue pair
99 Standard,
100 /// Force mlx5dv extended queue pair
101 Mlx5dv,
102}
103
104/// Converts `RdmaQpType` to the corresponding integer enum value in rdmaxcel_sys.
105pub fn resolve_qp_type(qp_type: RdmaQpType) -> u32 {
106 match qp_type {
107 RdmaQpType::Auto => {
108 if mlx5dv_supported() {
109 rdmaxcel_sys::RDMA_QP_TYPE_MLX5DV
110 } else {
111 rdmaxcel_sys::RDMA_QP_TYPE_STANDARD
112 }
113 }
114 RdmaQpType::Standard => rdmaxcel_sys::RDMA_QP_TYPE_STANDARD,
115 RdmaQpType::Mlx5dv => rdmaxcel_sys::RDMA_QP_TYPE_MLX5DV,
116 }
117}
118
119/// Represents ibverbs specific configurations.
120///
121/// This struct holds various parameters required to establish and manage an RDMA connection.
122/// It includes settings for the RDMA device, queue pair attributes, and other connection-specific
123/// parameters.
124#[derive(Debug, Named, Clone, Serialize, Deserialize)]
125pub struct IbverbsConfig {
126 /// `device` - The RDMA device to use for the connection.
127 pub device: RdmaDevice,
128 /// `cq_entries` - The number of completion queue entries.
129 pub cq_entries: i32,
130 /// `port_num` - The physical port number on the device.
131 pub port_num: u8,
132 /// `gid_index` - The GID index for the RDMA device.
133 pub gid_index: u8,
134 /// `max_send_wr` - The maximum number of outstanding send work requests.
135 pub max_send_wr: u32,
136 /// `max_recv_wr` - The maximum number of outstanding receive work requests.
137 pub max_recv_wr: u32,
138 /// `max_send_sge` - Te maximum number of scatter/gather elements in a send work request.
139 pub max_send_sge: u32,
140 /// `max_recv_sge` - The maximum number of scatter/gather elements in a receive work request.
141 pub max_recv_sge: u32,
142 /// `path_mtu` - The path MTU (Maximum Transmission Unit) for the connection.
143 pub path_mtu: u32,
144 /// `retry_cnt` - The number of retry attempts for a connection request.
145 pub retry_cnt: u8,
146 /// `rnr_retry` - The number of retry attempts for a receiver not ready (RNR) condition.
147 pub rnr_retry: u8,
148 /// `qp_timeout` - The timeout for a queue pair operation.
149 pub qp_timeout: u8,
150 /// `min_rnr_timer` - The minimum RNR timer value.
151 pub min_rnr_timer: u8,
152 /// `max_dest_rd_atomic` - The maximum number of outstanding RDMA read operations at the destination.
153 pub max_dest_rd_atomic: u8,
154 /// `max_rd_atomic` - The maximum number of outstanding RDMA read operations at the initiator.
155 pub max_rd_atomic: u8,
156 /// `pkey_index` - The partition key index.
157 pub pkey_index: u16,
158 /// `psn` - The packet sequence number.
159 pub psn: u32,
160 /// `use_gpu_direct` - Whether to enable GPU Direct RDMA support on init.
161 pub use_gpu_direct: bool,
162 /// `hw_init_delay_ms` - The delay in milliseconds before initializing the hardware.
163 /// This is used to allow the hardware to settle before starting the first transmission.
164 pub hw_init_delay_ms: u64,
165 /// `qp_type` - The type of queue pair to create (Auto, Standard, or Mlx5dv).
166 pub qp_type: RdmaQpType,
167}
168wirevalue::register_type!(IbverbsConfig);
169
170/// Default RDMA parameters below are based on common values from rdma-core examples
171/// For high-performance or production use, consider tuning
172/// based on ibv_query_device() results and workload characteristics
173impl Default for IbverbsConfig {
174 fn default() -> Self {
175 Self {
176 device: RdmaDevice::default(),
177 cq_entries: 1024,
178 port_num: 1,
179 gid_index: 3,
180 max_send_wr: 512,
181 max_recv_wr: 512,
182 max_send_sge: 30,
183 max_recv_sge: 30,
184 path_mtu: rdmaxcel_sys::IBV_MTU_4096,
185 retry_cnt: 7,
186 rnr_retry: 7,
187 qp_timeout: 14, // 4.096 μs * 2^14 = ~67 ms
188 min_rnr_timer: 12,
189 max_dest_rd_atomic: 16,
190 max_rd_atomic: 16,
191 pkey_index: 0,
192 psn: rand::random::<u32>() & 0xffffff,
193 use_gpu_direct: false, // nv_peermem enabled for cuda
194 hw_init_delay_ms: 2,
195 qp_type: RdmaQpType::Auto,
196 }
197 }
198}
199
200impl IbverbsConfig {
201 /// Create a new IbverbsConfig targeting a specific device
202 ///
203 /// Device targets use a unified "type:id" format:
204 /// - "cpu:N" -> finds RDMA device closest to NUMA node N
205 /// - "cuda:N" -> finds RDMA device closest to CUDA device N
206 /// - "nic:mlx5_N" -> returns the specified NIC directly
207 ///
208 /// Shortcuts:
209 /// - "cpu" -> defaults to "cpu:0"
210 /// - "cuda" -> defaults to "cuda:0"
211 ///
212 /// # Arguments
213 ///
214 /// * `target` - Target device specification
215 ///
216 /// # Returns
217 ///
218 /// * `IbverbsConfig` with resolved device, or default device if resolution fails
219 pub fn targeting(target: &str) -> Self {
220 // Normalize shortcuts
221 let normalized_target = match target {
222 "cpu" => "cpu:0",
223 "cuda" => "cuda:0",
224 _ => target,
225 };
226
227 let device = crate::device_selection::select_optimal_rdma_device(Some(normalized_target))
228 .unwrap_or_else(RdmaDevice::default);
229
230 Self {
231 device,
232 ..Default::default()
233 }
234 }
235}
236
237impl std::fmt::Display for IbverbsConfig {
238 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
239 write!(
240 f,
241 "IbverbsConfig {{ device: {}, port_num: {}, gid_index: {}, max_send_wr: {}, max_recv_wr: {}, max_send_sge: {}, max_recv_sge: {}, path_mtu: {:?}, retry_cnt: {}, rnr_retry: {}, qp_timeout: {}, min_rnr_timer: {}, max_dest_rd_atomic: {}, max_rd_atomic: {}, pkey_index: {}, psn: 0x{:x} }}",
242 self.device.name(),
243 self.port_num,
244 self.gid_index,
245 self.max_send_wr,
246 self.max_recv_wr,
247 self.max_send_sge,
248 self.max_recv_sge,
249 self.path_mtu,
250 self.retry_cnt,
251 self.rnr_retry,
252 self.qp_timeout,
253 self.min_rnr_timer,
254 self.max_dest_rd_atomic,
255 self.max_rd_atomic,
256 self.pkey_index,
257 self.psn,
258 )
259 }
260}
261
262/// Represents an RDMA device in the system.
263///
264/// This struct encapsulates information about an RDMA device, including its hardware
265/// characteristics, capabilities, and port information. It provides access to device
266/// attributes such as vendor information, firmware version, and supported features.
267///
268/// # Examples
269///
270/// ```
271/// use monarch_rdma::get_all_devices;
272///
273/// let devices = get_all_devices();
274/// if let Some(device) = devices.first() {
275/// // Access device name and firmware version
276/// let device_name = device.name();
277/// let firmware_version = device.fw_ver();
278/// }
279/// ```
280#[derive(Debug, Clone, Serialize, Deserialize)]
281pub struct RdmaDevice {
282 /// `name` - The name of the RDMA device (e.g., "mlx5_0").
283 pub name: String,
284 /// `vendor_id` - The vendor ID of the device.
285 vendor_id: u32,
286 /// `vendor_part_id` - The vendor part ID of the device.
287 vendor_part_id: u32,
288 /// `hw_ver` - Hardware version of the device.
289 hw_ver: u32,
290 /// `fw_ver` - Firmware version of the device.
291 fw_ver: String,
292 /// `node_guid` - Node GUID (Globally Unique Identifier) of the device.
293 node_guid: u64,
294 /// `ports` - Vector of ports available on this device.
295 ports: Vec<RdmaPort>,
296 /// `max_qp` - Maximum number of queue pairs supported.
297 max_qp: i32,
298 /// `max_cq` - Maximum number of completion queues supported.
299 max_cq: i32,
300 /// `max_mr` - Maximum number of memory regions supported.
301 max_mr: i32,
302 /// `max_pd` - Maximum number of protection domains supported.
303 max_pd: i32,
304 /// `max_qp_wr` - Maximum number of work requests per queue pair.
305 max_qp_wr: i32,
306 /// `max_sge` - Maximum number of scatter/gather elements per work request.
307 max_sge: i32,
308}
309
310impl RdmaDevice {
311 /// Returns the name of the RDMA device.
312 pub fn name(&self) -> &String {
313 &self.name
314 }
315
316 /// Returns the first available RDMA device, if any.
317 pub fn first_available() -> Option<RdmaDevice> {
318 let devices = get_all_devices();
319 if devices.is_empty() {
320 None
321 } else {
322 Some(devices.into_iter().next().unwrap())
323 }
324 }
325
326 /// Returns the vendor ID of the RDMA device.
327 pub fn vendor_id(&self) -> u32 {
328 self.vendor_id
329 }
330
331 /// Returns the vendor part ID of the RDMA device.
332 pub fn vendor_part_id(&self) -> u32 {
333 self.vendor_part_id
334 }
335
336 /// Returns the hardware version of the RDMA device.
337 pub fn hw_ver(&self) -> u32 {
338 self.hw_ver
339 }
340
341 /// Returns the firmware version of the RDMA device.
342 pub fn fw_ver(&self) -> &String {
343 &self.fw_ver
344 }
345
346 /// Returns the node GUID of the RDMA device.
347 pub fn node_guid(&self) -> u64 {
348 self.node_guid
349 }
350
351 /// Returns a reference to the vector of ports available on the RDMA device.
352 pub fn ports(&self) -> &Vec<RdmaPort> {
353 &self.ports
354 }
355
356 /// Returns the maximum number of queue pairs supported by the RDMA device.
357 pub fn max_qp(&self) -> i32 {
358 self.max_qp
359 }
360
361 /// Returns the maximum number of completion queues supported by the RDMA device.
362 pub fn max_cq(&self) -> i32 {
363 self.max_cq
364 }
365
366 /// Returns the maximum number of memory regions supported by the RDMA device.
367 pub fn max_mr(&self) -> i32 {
368 self.max_mr
369 }
370
371 /// Returns the maximum number of protection domains supported by the RDMA device.
372 pub fn max_pd(&self) -> i32 {
373 self.max_pd
374 }
375
376 /// Returns the maximum number of work requests per queue pair supported by the RDMA device.
377 pub fn max_qp_wr(&self) -> i32 {
378 self.max_qp_wr
379 }
380
381 /// Returns the maximum number of scatter/gather elements per work request supported by the RDMA device.
382 pub fn max_sge(&self) -> i32 {
383 self.max_sge
384 }
385}
386
387impl Default for RdmaDevice {
388 fn default() -> Self {
389 // Try to get a smart default using device selection logic (defaults to cpu:0)
390 if let Some(device) = crate::device_selection::select_optimal_rdma_device(Some("cpu:0")) {
391 device
392 } else {
393 // Fallback to first available device
394 get_all_devices()
395 .into_iter()
396 .next()
397 .unwrap_or_else(|| panic!("No RDMA devices found"))
398 }
399 }
400}
401
402#[derive(Debug, Clone, Serialize, Deserialize)]
403pub struct RdmaPort {
404 /// `port_num` - The physical port number on the device.
405 port_num: u8,
406 /// `state` - The current state of the port.
407 state: String,
408 /// `physical_state` - The physical state of the port.
409 physical_state: String,
410 /// `base_lid` - Base Local Identifier for the port.
411 base_lid: u16,
412 /// `lmc` - LID Mask Control.
413 lmc: u8,
414 /// `sm_lid` - Subnet Manager Local Identifier.
415 sm_lid: u16,
416 /// `capability_mask` - Capability mask of the port.
417 capability_mask: u32,
418 /// `link_layer` - The link layer type (e.g., InfiniBand, Ethernet).
419 link_layer: String,
420 /// `gid` - Global Identifier for the port.
421 gid: String,
422 /// `gid_tbl_len` - Length of the GID table.
423 gid_tbl_len: i32,
424}
425
426impl fmt::Display for RdmaDevice {
427 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
428 writeln!(f, "{}", self.name)?;
429 writeln!(f, "\tNumber of ports: {}", self.ports.len())?;
430 writeln!(f, "\tFirmware version: {}", self.fw_ver)?;
431 writeln!(f, "\tHardware version: {}", self.hw_ver)?;
432 writeln!(f, "\tNode GUID: 0x{:016x}", self.node_guid)?;
433 writeln!(f, "\tVendor ID: 0x{:x}", self.vendor_id)?;
434 writeln!(f, "\tVendor part ID: {}", self.vendor_part_id)?;
435 writeln!(f, "\tMax QPs: {}", self.max_qp)?;
436 writeln!(f, "\tMax CQs: {}", self.max_cq)?;
437 writeln!(f, "\tMax MRs: {}", self.max_mr)?;
438 writeln!(f, "\tMax PDs: {}", self.max_pd)?;
439 writeln!(f, "\tMax QP WRs: {}", self.max_qp_wr)?;
440 writeln!(f, "\tMax SGE: {}", self.max_sge)?;
441
442 for port in &self.ports {
443 write!(f, "{}", port)?;
444 }
445
446 Ok(())
447 }
448}
449
450impl fmt::Display for RdmaPort {
451 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
452 writeln!(f, "\tPort {}:", self.port_num)?;
453 writeln!(f, "\t\tState: {}", self.state)?;
454 writeln!(f, "\t\tPhysical state: {}", self.physical_state)?;
455 writeln!(f, "\t\tBase lid: {}", self.base_lid)?;
456 writeln!(f, "\t\tLMC: {}", self.lmc)?;
457 writeln!(f, "\t\tSM lid: {}", self.sm_lid)?;
458 writeln!(f, "\t\tCapability mask: 0x{:08x}", self.capability_mask)?;
459 writeln!(f, "\t\tLink layer: {}", self.link_layer)?;
460 writeln!(f, "\t\tGID: {}", self.gid)?;
461 writeln!(f, "\t\tGID table length: {}", self.gid_tbl_len)?;
462 Ok(())
463 }
464}
465
466/// Converts the given port state to a human-readable string.
467///
468/// # Arguments
469///
470/// * `state` - The port state as defined by `ffi::ibv_port_state::Type`.
471///
472/// # Returns
473///
474/// A string representation of the port state.
475pub fn get_port_state_str(state: rdmaxcel_sys::ibv_port_state::Type) -> String {
476 // SAFETY: We are calling a C function that returns a C string.
477 unsafe {
478 let c_str = rdmaxcel_sys::ibv_port_state_str(state);
479 if c_str.is_null() {
480 return "Unknown".to_string();
481 }
482 CStr::from_ptr(c_str).to_string_lossy().into_owned()
483 }
484}
485
486/// Converts the given physical state to a human-readable string.
487///
488/// # Arguments
489///
490/// * `phys_state` - The physical state as a `u8`.
491///
492/// # Returns
493///
494/// A string representation of the physical state.
495pub fn get_port_phy_state_str(phys_state: u8) -> String {
496 match phys_state {
497 1 => "Sleep".to_string(),
498 2 => "Polling".to_string(),
499 3 => "Disabled".to_string(),
500 4 => "PortConfigurationTraining".to_string(),
501 5 => "LinkUp".to_string(),
502 6 => "LinkErrorRecovery".to_string(),
503 7 => "PhyTest".to_string(),
504 _ => "No state change".to_string(),
505 }
506}
507
508/// Converts the given link layer type to a human-readable string.
509///
510/// # Arguments
511///
512/// * `link_layer` - The link layer type as a `u8`.
513///
514/// # Returns
515///
516/// A string representation of the link layer type.
517pub fn get_link_layer_str(link_layer: u8) -> String {
518 match link_layer {
519 1 => "InfiniBand".to_string(),
520 2 => "Ethernet".to_string(),
521 _ => "Unknown".to_string(),
522 }
523}
524
525/// Formats a GID (Global Identifier) into a human-readable string.
526///
527/// # Arguments
528///
529/// * `gid` - A reference to a 16-byte array representing the GID.
530///
531/// # Returns
532///
533/// A formatted string representation of the GID.
534pub fn format_gid(gid: &[u8; 16]) -> String {
535 format!(
536 "{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}:{:02x}{:02x}",
537 gid[0],
538 gid[1],
539 gid[2],
540 gid[3],
541 gid[4],
542 gid[5],
543 gid[6],
544 gid[7],
545 gid[8],
546 gid[9],
547 gid[10],
548 gid[11],
549 gid[12],
550 gid[13],
551 gid[14],
552 gid[15]
553 )
554}
555
556/// Retrieves information about all available RDMA devices in the system.
557///
558/// This function queries the system for all available RDMA devices and returns
559/// detailed information about each device, including its capabilities, ports,
560/// and attributes.
561///
562/// # Returns
563///
564/// A vector of `RdmaDevice` structures, each representing an RDMA device in the system.
565/// Returns an empty vector if no devices are found or if there was an error querying
566/// the devices.
567pub fn get_all_devices() -> Vec<RdmaDevice> {
568 let mut devices = Vec::new();
569
570 // SAFETY: We are calling several C functions from libibverbs.
571 unsafe {
572 let mut num_devices = 0;
573 let device_list = rdmaxcel_sys::ibv_get_device_list(&mut num_devices);
574 if device_list.is_null() || num_devices == 0 {
575 return devices;
576 }
577
578 for i in 0..num_devices {
579 let device = *device_list.add(i as usize);
580 if device.is_null() {
581 continue;
582 }
583
584 let context = rdmaxcel_sys::ibv_open_device(device);
585 if context.is_null() {
586 continue;
587 }
588
589 let device_name = CStr::from_ptr(rdmaxcel_sys::ibv_get_device_name(device))
590 .to_string_lossy()
591 .into_owned();
592
593 let mut device_attr = rdmaxcel_sys::ibv_device_attr::default();
594 if rdmaxcel_sys::ibv_query_device(context, &mut device_attr) != 0 {
595 rdmaxcel_sys::ibv_close_device(context);
596 continue;
597 }
598
599 let fw_ver = CStr::from_ptr(device_attr.fw_ver.as_ptr())
600 .to_string_lossy()
601 .into_owned();
602
603 let mut rdma_device = RdmaDevice {
604 name: device_name,
605 vendor_id: device_attr.vendor_id,
606 vendor_part_id: device_attr.vendor_part_id,
607 hw_ver: device_attr.hw_ver,
608 fw_ver,
609 node_guid: device_attr.node_guid,
610 ports: Vec::new(),
611 max_qp: device_attr.max_qp,
612 max_cq: device_attr.max_cq,
613 max_mr: device_attr.max_mr,
614 max_pd: device_attr.max_pd,
615 max_qp_wr: device_attr.max_qp_wr,
616 max_sge: device_attr.max_sge,
617 };
618
619 for port_num in 1..=device_attr.phys_port_cnt {
620 let mut port_attr = rdmaxcel_sys::ibv_port_attr::default();
621 if rdmaxcel_sys::ibv_query_port(
622 context,
623 port_num,
624 &mut port_attr as *mut rdmaxcel_sys::ibv_port_attr as *mut _,
625 ) != 0
626 {
627 continue;
628 }
629 let state = get_port_state_str(port_attr.state);
630 let physical_state = get_port_phy_state_str(port_attr.phys_state);
631
632 let link_layer = get_link_layer_str(port_attr.link_layer);
633
634 let mut gid = rdmaxcel_sys::ibv_gid::default();
635 let gid_str = if rdmaxcel_sys::ibv_query_gid(context, port_num, 0, &mut gid) == 0 {
636 format_gid(&gid.raw)
637 } else {
638 "N/A".to_string()
639 };
640
641 let rdma_port = RdmaPort {
642 port_num,
643 state,
644 physical_state,
645 base_lid: port_attr.lid,
646 lmc: port_attr.lmc,
647 sm_lid: port_attr.sm_lid,
648 capability_mask: port_attr.port_cap_flags,
649 link_layer,
650 gid: gid_str,
651 gid_tbl_len: port_attr.gid_tbl_len,
652 };
653
654 rdma_device.ports.push(rdma_port);
655 }
656
657 devices.push(rdma_device);
658 rdmaxcel_sys::ibv_close_device(context);
659 }
660
661 rdmaxcel_sys::ibv_free_device_list(device_list);
662 }
663
664 devices
665}
666
667/// Cached result of mlx5dv support check.
668static MLX5DV_SUPPORTED_CACHE: OnceLock<bool> = OnceLock::new();
669
670/// Checks if mlx5dv (Mellanox device-specific verbs extension) is supported.
671///
672/// This function attempts to open the first available RDMA device and check if
673/// mlx5dv extensions can be initialized. The mlx5dv extensions are required for
674/// advanced features like GPU Direct RDMA and direct queue pair manipulation.
675///
676/// The result is cached after the first call, making subsequent calls essentially free.
677///
678/// # Returns
679///
680/// `true` if mlx5dv extensions are supported, `false` otherwise.
681pub fn mlx5dv_supported() -> bool {
682 *MLX5DV_SUPPORTED_CACHE.get_or_init(mlx5dv_supported_impl)
683}
684
685fn mlx5dv_supported_impl() -> bool {
686 // SAFETY: We are calling C functions from libibverbs and libmlx5.
687 unsafe {
688 let mut mlx5dv_supported = false;
689 let mut num_devices = 0;
690 let device_list = rdmaxcel_sys::ibv_get_device_list(&mut num_devices);
691 if !device_list.is_null() && num_devices > 0 {
692 let device = *device_list;
693 if !device.is_null() {
694 mlx5dv_supported = rdmaxcel_sys::mlx5dv_is_supported(device);
695 }
696 rdmaxcel_sys::ibv_free_device_list(device_list);
697 }
698 mlx5dv_supported
699 }
700}
701
702/// Cached result of ibverbs support check.
703static IBVERBS_SUPPORTED_CACHE: OnceLock<bool> = OnceLock::new();
704
705/// Checks if ibverbs devices can be retrieved successfully.
706///
707/// This function attempts to retrieve the list of RDMA devices using the
708/// `ibv_get_device_list` function from the ibverbs library. It returns `true`
709/// if devices are found, and `false` otherwise.
710///
711/// The result is cached after the first call, making subsequent calls essentially free.
712///
713/// # Returns
714///
715/// `true` if devices are successfully retrieved, `false` otherwise.
716pub fn ibverbs_supported() -> bool {
717 *IBVERBS_SUPPORTED_CACHE.get_or_init(ibverbs_supported_impl)
718}
719
720fn ibverbs_supported_impl() -> bool {
721 // SAFETY: We are calling a C function from libibverbs.
722 unsafe {
723 let mut num_devices = 0;
724 let device_list = rdmaxcel_sys::ibv_get_device_list(&mut num_devices);
725 if !device_list.is_null() {
726 rdmaxcel_sys::ibv_free_device_list(device_list);
727 }
728 num_devices > 0
729 }
730}
731
732/// Checks if RDMA is fully supported on this system.
733///
734/// This is the canonical function to check if RDMA can be used.
735pub fn rdma_supported() -> bool {
736 ibverbs_supported()
737}
738
739/// Represents a view of a memory region that can be registered with an RDMA device.
740///
741/// This is a 'view' of a registered Memory Region, allowing multiple views into a single
742/// large MR registration. This is commonly used with PyTorch's caching allocator, which
743/// reserves large memory blocks and provides different data pointers into that space.
744///
745/// # Example
746/// PyTorch Caching Allocator creates a 16GB segment at virtual address `0x01000000`.
747/// The underlying Memory Region registers 16GB but at RDMA address `0x0`.
748/// To access virtual address `0x01100000`, we return a view at RDMA address `0x100000`.
749///
750/// # Safety
751/// The caller must ensure the memory remains valid and is not freed, moved, or
752/// overwritten while RDMA operations are in progress.
753
754#[derive(
755 Debug,
756 PartialEq,
757 Eq,
758 std::hash::Hash,
759 Serialize,
760 Deserialize,
761 Clone,
762 Copy
763)]
764pub struct RdmaMemoryRegionView {
765 // id should be unique with a given rdmam manager
766 pub id: usize,
767 /// Virtual address in the process address space.
768 /// This is the pointer/address as seen by the local process.
769 pub virtual_addr: usize,
770 /// Memory address assigned after Memory Region (MR) registration.
771 /// This is the address may be offset a base MR addr.
772 pub rdma_addr: usize,
773 pub size: usize,
774 pub lkey: u32,
775 pub rkey: u32,
776}
777
778// SAFETY: RdmaMemoryRegionView can be safely sent between threads because it only
779// contains address and size information without any thread-local state. However,
780// this DOES NOT provide any protection against data races in the underlying memory.
781// If one thread initiates an RDMA operation while another thread modifies the same
782// memory region, undefined behavior will occur. The caller is responsible for proper
783// synchronization of access to the underlying memory.
784unsafe impl Send for RdmaMemoryRegionView {}
785
786// SAFETY: RdmaMemoryRegionView is safe for concurrent access by multiple threads
787// as it only provides a view into memory without modifying its own state. However,
788// it provides NO PROTECTION against concurrent access to the underlying memory region.
789// The caller must ensure proper synchronization when:
790// 1. Initiating RDMA operations while local code reads/writes the same memory
791// 2. Performing multiple overlapping RDMA operations on the same memory region
792// 3. Freeing or reallocating memory that has in-flight RDMA operations
793unsafe impl Sync for RdmaMemoryRegionView {}
794
795impl RdmaMemoryRegionView {
796 /// Creates a new `RdmaMemoryRegionView` with the given address and size.
797 pub fn new(
798 id: usize,
799 virtual_addr: usize,
800 rdma_addr: usize,
801 size: usize,
802 lkey: u32,
803 rkey: u32,
804 ) -> Self {
805 Self {
806 id,
807 virtual_addr,
808 rdma_addr,
809 size,
810 lkey,
811 rkey,
812 }
813 }
814}
815
816/// Enum representing the common RDMA operations.
817///
818/// This provides a more ergonomic interface to the underlying ibv_wr_opcode types.
819/// RDMA operations allow for direct memory access between two machines without
820/// involving the CPU of the target machine.
821///
822/// # Variants
823///
824/// * `Write` - Represents an RDMA write operation where data is written from the local
825/// memory to a remote memory region.
826/// * `Read` - Represents an RDMA read operation where data is read from a remote memory
827/// region into the local memory.
828#[derive(Debug, Clone, Copy, PartialEq, Eq)]
829pub enum RdmaOperation {
830 /// RDMA write operations
831 Write,
832 WriteWithImm,
833 /// RDMA read operation
834 Read,
835 /// RDMA recv operation
836 Recv,
837}
838
839impl From<RdmaOperation> for rdmaxcel_sys::ibv_wr_opcode::Type {
840 fn from(op: RdmaOperation) -> Self {
841 match op {
842 RdmaOperation::Write => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE,
843 RdmaOperation::WriteWithImm => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE_WITH_IMM,
844 RdmaOperation::Read => rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_READ,
845 RdmaOperation::Recv => panic!("Invalid wr opcode"),
846 }
847 }
848}
849
850impl From<rdmaxcel_sys::ibv_wc_opcode::Type> for RdmaOperation {
851 fn from(op: rdmaxcel_sys::ibv_wc_opcode::Type) -> Self {
852 match op {
853 rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_WRITE => RdmaOperation::Write,
854 rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_READ => RdmaOperation::Read,
855 _ => panic!("Unsupported operation type"),
856 }
857 }
858}
859
860/// Contains information needed to establish an RDMA queue pair with a remote endpoint.
861///
862/// `RdmaQpInfo` encapsulates all the necessary information to establish a queue pair
863/// with a remote RDMA device. This includes queue pair number, LID (Local Identifier),
864/// GID (Global Identifier), remote memory address, remote key, and packet sequence number.
865#[derive(Default, Named, Clone, serde::Serialize, serde::Deserialize)]
866pub struct RdmaQpInfo {
867 /// `qp_num` - Queue Pair Number, uniquely identifies a queue pair on the remote device
868 pub qp_num: u32,
869 /// `lid` - Local Identifier, used for addressing in InfiniBand subnet
870 pub lid: u16,
871 /// `gid` - Global Identifier, used for routing across subnets (similar to IPv6 address)
872 pub gid: Option<Gid>,
873 /// `psn` - Packet Sequence Number, used for ordering packets
874 pub psn: u32,
875}
876wirevalue::register_type!(RdmaQpInfo);
877
878impl std::fmt::Debug for RdmaQpInfo {
879 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
880 write!(
881 f,
882 "RdmaQpInfo {{ qp_num: {}, lid: {}, gid: {:?}, psn: 0x{:x} }}",
883 self.qp_num, self.lid, self.gid, self.psn
884 )
885 }
886}
887
888/// Wrapper around ibv_wc (ibverbs work completion).
889///
890/// This exposes only the public fields of rdmaxcel_sys::ibv_wc, allowing us to more easily
891/// interact with it from Rust. Work completions are used to track the status of
892/// RDMA operations and are generated when an operation completes.
893#[derive(Debug, Named, Clone, serde::Serialize, serde::Deserialize)]
894pub struct IbvWc {
895 /// `wr_id` - Work Request ID, used to identify the completed operation
896 wr_id: u64,
897 /// `len` - Length of the data transferred
898 len: usize,
899 /// `valid` - Whether the work completion is valid
900 valid: bool,
901 /// `error` - Error information if the operation failed
902 error: Option<(rdmaxcel_sys::ibv_wc_status::Type, u32)>,
903 /// `opcode` - Type of operation that completed (read, write, etc.)
904 opcode: rdmaxcel_sys::ibv_wc_opcode::Type,
905 /// `bytes` - Immediate data (if any)
906 bytes: Option<u32>,
907 /// `qp_num` - Queue Pair Number
908 qp_num: u32,
909 /// `src_qp` - Source Queue Pair Number
910 src_qp: u32,
911 /// `pkey_index` - Partition Key Index
912 pkey_index: u16,
913 /// `slid` - Source LID
914 slid: u16,
915 /// `sl` - Service Level
916 sl: u8,
917 /// `dlid_path_bits` - Destination LID Path Bits
918 dlid_path_bits: u8,
919}
920wirevalue::register_type!(IbvWc);
921
922impl From<rdmaxcel_sys::ibv_wc> for IbvWc {
923 fn from(wc: rdmaxcel_sys::ibv_wc) -> Self {
924 IbvWc {
925 wr_id: wc.wr_id(),
926 len: wc.len(),
927 valid: wc.is_valid(),
928 error: wc.error(),
929 opcode: wc.opcode(),
930 bytes: wc.imm_data(),
931 qp_num: wc.qp_num,
932 src_qp: wc.src_qp,
933 pkey_index: wc.pkey_index,
934 slid: wc.slid,
935 sl: wc.sl,
936 dlid_path_bits: wc.dlid_path_bits,
937 }
938 }
939}
940
941impl IbvWc {
942 /// Returns the Work Request ID associated with this work completion.
943 ///
944 /// The Work Request ID is used to identify the specific operation that completed.
945 /// It is set by the application when posting the work request and is returned
946 /// unchanged in the work completion.
947 pub fn wr_id(&self) -> u64 {
948 self.wr_id
949 }
950
951 /// Returns whether this work completion is valid.
952 ///
953 /// A valid work completion indicates that the operation completed successfully.
954 /// If false, the `error` field may contain additional information about the failure.
955 pub fn is_valid(&self) -> bool {
956 self.valid
957 }
958}
959
960#[cfg(test)]
961mod tests {
962 use super::*;
963
964 #[test]
965 fn test_get_all_devices() {
966 // Skip test if RDMA devices are not available
967 let devices = get_all_devices();
968 if devices.is_empty() {
969 println!("Skipping test: RDMA devices not available");
970 return;
971 }
972 // Basic validation of first device
973 let device = &devices[0];
974 assert!(!device.name().is_empty(), "device name should not be empty");
975 assert!(
976 !device.ports().is_empty(),
977 "device should have at least one port"
978 );
979 }
980
981 #[test]
982 fn test_first_available() {
983 // Skip test if RDMA is not available
984 let devices = get_all_devices();
985 if devices.is_empty() {
986 println!("Skipping test: RDMA devices not available");
987 return;
988 }
989 // Basic validation of first device
990 let device = &devices[0];
991
992 let dev = device;
993 // Verify getters return expected values
994 assert_eq!(dev.vendor_id(), dev.vendor_id);
995 assert_eq!(dev.vendor_part_id(), dev.vendor_part_id);
996 assert_eq!(dev.hw_ver(), dev.hw_ver);
997 assert_eq!(dev.fw_ver(), &dev.fw_ver);
998 assert_eq!(dev.node_guid(), dev.node_guid);
999 assert_eq!(dev.max_qp(), dev.max_qp);
1000 assert_eq!(dev.max_cq(), dev.max_cq);
1001 assert_eq!(dev.max_mr(), dev.max_mr);
1002 assert_eq!(dev.max_pd(), dev.max_pd);
1003 assert_eq!(dev.max_qp_wr(), dev.max_qp_wr);
1004 assert_eq!(dev.max_sge(), dev.max_sge);
1005 }
1006
1007 #[test]
1008 fn test_device_display() {
1009 if let Some(device) = RdmaDevice::first_available() {
1010 let display_output = format!("{}", device);
1011 assert!(
1012 display_output.contains(&device.name),
1013 "display should include device name"
1014 );
1015 assert!(
1016 display_output.contains(&device.fw_ver),
1017 "display should include firmware version"
1018 );
1019 }
1020 }
1021
1022 #[test]
1023 fn test_port_display() {
1024 if let Some(device) = RdmaDevice::first_available() {
1025 if !device.ports().is_empty() {
1026 let port = &device.ports()[0];
1027 let display_output = format!("{}", port);
1028 assert!(
1029 display_output.contains(&port.state),
1030 "display should include port state"
1031 );
1032 assert!(
1033 display_output.contains(&port.link_layer),
1034 "display should include link layer"
1035 );
1036 }
1037 }
1038 }
1039
1040 #[test]
1041 fn test_rdma_operation_conversion() {
1042 assert_eq!(
1043 rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_WRITE,
1044 rdmaxcel_sys::ibv_wr_opcode::Type::from(RdmaOperation::Write)
1045 );
1046 assert_eq!(
1047 rdmaxcel_sys::ibv_wr_opcode::IBV_WR_RDMA_READ,
1048 rdmaxcel_sys::ibv_wr_opcode::Type::from(RdmaOperation::Read)
1049 );
1050
1051 assert_eq!(
1052 RdmaOperation::Write,
1053 RdmaOperation::from(rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_WRITE)
1054 );
1055 assert_eq!(
1056 RdmaOperation::Read,
1057 RdmaOperation::from(rdmaxcel_sys::ibv_wc_opcode::IBV_WC_RDMA_READ)
1058 );
1059 }
1060
1061 #[test]
1062 fn test_rdma_endpoint() {
1063 let endpoint = RdmaQpInfo {
1064 qp_num: 42,
1065 lid: 123,
1066 gid: None,
1067 psn: 0x5678,
1068 };
1069
1070 let debug_str = format!("{:?}", endpoint);
1071 assert!(debug_str.contains("qp_num: 42"));
1072 assert!(debug_str.contains("lid: 123"));
1073 assert!(debug_str.contains("psn: 0x5678"));
1074 }
1075
1076 #[test]
1077 fn test_ibv_wc() {
1078 let mut wc = rdmaxcel_sys::ibv_wc::default();
1079
1080 // SAFETY: modifies private fields through pointer manipulation
1081 unsafe {
1082 // Cast to pointer and modify the fields directly
1083 let wc_ptr = &mut wc as *mut rdmaxcel_sys::ibv_wc as *mut u8;
1084
1085 // Set wr_id (at offset 0, u64)
1086 *(wc_ptr as *mut u64) = 42;
1087
1088 // Set status to SUCCESS (at offset 8, u32)
1089 *(wc_ptr.add(8) as *mut i32) = rdmaxcel_sys::ibv_wc_status::IBV_WC_SUCCESS as i32;
1090 }
1091 let ibv_wc = IbvWc::from(wc);
1092 assert_eq!(ibv_wc.wr_id(), 42);
1093 assert!(ibv_wc.is_valid());
1094 }
1095
1096 #[test]
1097 fn test_format_gid() {
1098 let gid = [
1099 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
1100 0x77, 0x88,
1101 ];
1102
1103 let formatted = format_gid(&gid);
1104 assert_eq!(formatted, "1234:5678:9abc:def0:1122:3344:5566:7788");
1105 }
1106
1107 #[test]
1108 fn test_mlx5dv_supported_basic() {
1109 // The test just verifies the function doesn't panic
1110 let mlx5dv_support = mlx5dv_supported();
1111 println!("mlx5dv_supported: {}", mlx5dv_support);
1112 }
1113}