.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_examples_apps_datapreproc_datapreproc.py:
Data Preprocessing App Example
====================================
This is a simple TorchX app that downloads some data via HTTP, normalizes the
images via torchvision and then reuploads it via fsspec.
.. code-block:: default
import argparse
import os
import sys
import tarfile
import tempfile
import zipfile
from typing import List
import fsspec
from PIL import Image
from torchvision import transforms
from torchvision.datasets.folder import is_image_file
from tqdm import tqdm
def parse_args(argv: List[str]) -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="example data preprocessing",
)
parser.add_argument(
"--input_path",
type=str,
help="dataset to download",
default="http://cs231n.stanford.edu/tiny-imagenet-200.zip",
)
parser.add_argument(
"--output_path",
type=str,
help="remote path to save the .tar.gz data to",
required=True,
)
return parser.parse_args(argv)
def download_and_extract_zip_archive(url: str, path: str) -> None:
with fsspec.open(url, "rb") as f:
with zipfile.ZipFile(f, "r") as zip_ref:
zip_ref.extractall(path)
def main(argv: List[str]) -> None:
args = parse_args(argv)
with tempfile.TemporaryDirectory() as tmpdir:
print(f"downloading {args.input_path} to {tmpdir}...")
download_and_extract_zip_archive(args.input_path, tmpdir)
img_root = os.path.join(
tmpdir,
os.path.splitext(os.path.basename(args.input_path))[0],
)
print(f"img_root={img_root}")
print("transforming images...")
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.ToPILImage(),
]
)
image_files = []
for root, _, fnames in os.walk(img_root):
for fname in fnames:
path = os.path.join(root, fname)
if not is_image_file(path):
continue
image_files.append(path)
for path in tqdm(image_files, miniters=int(len(image_files) / 2000)):
f = Image.open(path)
f = transform(f)
f.save(path)
tar_path = os.path.join(tmpdir, "out.tar.gz")
print(f"packing images into {tar_path}...")
with tarfile.open(tar_path, mode="w:gz") as f:
f.add(img_root, arcname="")
print(f"uploading dataset to {args.output_path}...")
fs, _, rpaths = fsspec.get_fs_token_paths(args.output_path)
assert len(rpaths) == 1, "must have single output path"
if fs.exists(rpaths[0]):
fs.rm(rpaths[0])
fs.put(tar_path, rpaths[0])
if __name__ == "__main__" and "NOTEBOOK" not in globals():
main(sys.argv[1:])
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.000 seconds)
.. _sphx_glr_download_examples_apps_datapreproc_datapreproc.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: datapreproc.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: datapreproc.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_